Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507609 | PMC |
http://dx.doi.org/10.3390/s150613288 | DOI Listing |
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fujian Agriculture and Forestry University, College of Resources and Environment, CHINA.
Nanobiohybrids for solar-driven methanogenesis present a promising solution to the global energy crisis. However, conventional semiconductor-based nanobiohybrids face challenges such as limited tunability and poor biocompatibility, leading to undesirable spontaneous electron and proton transfer that compromise their structural stability and CH4 selectivity. Herein, we introduced eutectic gallium-indium alloys (EGaIn), featuring a self-limiting surface oxide layer surrounding the liquid metal core after sonication, integrated with Methanosarcina barkeri (M.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!