A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic changes in phrenic motor output following high cervical hemisection in the decerebrate rat. | LitMetric

Hemisection of the spinal cord at C2 eliminates ipsilateral descending drive to the phrenic nucleus and causes hemidiaphragmatic paralysis in rats. Phrenic nerve (PhN) or diaphragmatic activity ipsilateral to hemisection can occasionally be induced acutely following hemisection by respiratory stressors (i.e., hypercapnia, asphyxia, contralateral phrenicotomy) and becomes spontaneously active days-to-weeks later. These investigations, however, are potentially confounded by the use of anesthesia, which may suppress spontaneously-active crossed phrenic pathways. Experiments were performed on vecuronium-paralyzed, unanesthetized, decerebrate adult male rats and whole PhN activity recorded continuously before, during, and after high cervical hemisection at the C1 spinal level. Crossed phrenic activity recovered spontaneously over minutes-to-hours with maximal recovery of 11.8 ± 3.1% (m ± SE) in the PhN ipsilateral to hemisection. Additionally, there was a significant increase in PhN activity contralateral to hemisection of 221.0 ± 4 0.4% (m ± SE); since animals were artificially-ventilated, these changes likely represent an increase in central respiratory drive. These results underscore the state-dependence of crossed bulbophrenic projections and suggest that unanesthetized models may be more sensitive in detecting acute recovery of respiratory output following spinal cord injury (SCI). Additionally, our results may suggest an important role for a group of C1-C2 neurons exhibiting respiratory-related activity, spared by the higher level of hemisection. These units may function as relays of polysynaptic bulbophrenic pathways and/or provide excitatory drive to phrenic motoneurons. Our findings provide a new model for investigating acute respiratory recovery following cervical SCI, the high C1-hemisected unanesthetized decerebrate rat and suggest a centrally-mediated increase in central respiratory drive in response to high cervical SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2015.06.002DOI Listing

Publication Analysis

Top Keywords

high cervical
12
hemisection
8
cervical hemisection
8
decerebrate rat
8
hemisection spinal
8
spinal cord
8
drive phrenic
8
ipsilateral hemisection
8
crossed phrenic
8
unanesthetized decerebrate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!