The content of mitochondrial proteome is maintained through two highly dynamic processes, the influx of newly synthesized proteins from the cytosol and the protein degradation. Mitochondrial proteins are targeted to the intermembrane space by the mitochondrial intermembrane space assembly pathway that couples their import and oxidative folding. The folding trap was proposed to be a driving mechanism for the mitochondrial accumulation of these proteins. Whether the reverse movement of unfolded proteins to the cytosol occurs across the intact outer membrane is unknown. We found that reduced, conformationally destabilized proteins are released from mitochondria in a size-limited manner. We identified the general import pore protein Tom40 as an escape gate. We propose that the mitochondrial proteome is not only regulated by the import and degradation of proteins but also by their retro-translocation to the external cytosolic location. Thus, protein release is a mechanism that contributes to the mitochondrial proteome surveillance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485110PMC
http://dx.doi.org/10.1073/pnas.1504615112DOI Listing

Publication Analysis

Top Keywords

intermembrane space
12
mitochondrial proteome
12
mitochondrial intermembrane
8
proteins cytosol
8
proteins
7
mitochondrial
6
retro-translocation mitochondrial
4
space proteins
4
proteins content
4
content mitochondrial
4

Similar Publications

Hotspots for Disease-Causing Mutations in the Mitochondrial TIM23 Import Complex.

Genes (Basel)

November 2024

School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.

The human mitochondrial proteome comprises approximately 1500 proteins, with only 13 being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The process of mitochondria-destined protein import is mediated by several intricate protein complexes distributed among the four mitochondrial compartments.

View Article and Find Full Text PDF

A novel super-resolution STED microscopy analysis approach to observe spatial MCU and MICU1 distribution dynamics in cells.

Biochim Biophys Acta Mol Cell Res

January 2025

Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4 EAST, 8010 Graz, Austria; BioTechMed, Graz, Austria. Electronic address:

The uptake of Ca by mitochondria is an important and tightly controlled process in various tissues. Even small changes in the key proteins involved in this process can lead to significant cellular dysfunction and, ultimately, cell death. In this study, we used stimulated emission depletion (STED) microscopy and developed an unbiased approach to monitor the sub-mitochondrial distribution and dynamics of the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake 1 (MICU1) under resting and stimulated conditions.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

Chemical mitochondrial uncouplers are protonophoric, lipophilic small molecules that transport protons from the mitochondrial intermembrane space into the matrix independent of ATP synthase, thus uncoupling nutrient oxidation from ATP production. Our previous work identified BAM15 (IC 0.27 μM) as a potent and efficacious mitochondrial uncoupler with potential for obesity treatment.

View Article and Find Full Text PDF

Targeting signals required for protein sorting to sub-chloroplast compartments.

Plant Cell Rep

December 2024

Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.

Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!