iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes.

J Zhejiang Univ Sci B

State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Jilin University, Changchun 130062, China.

Published: June 2015

Non-starch polysaccharide enzymes (NSPEs) have long been used in the feed production of monogastric animals to degrade non-starch polysaccharide to oligosaccharides and promote growth performance. However, few studies have been conducted on the effect of such enzymes on skeletal muscle in monogastric animals. To elucidate the mechanism of the effect of NSPEs on skeletal muscle, an isobaric tag for relative and absolute quantification (iTRAQ) for differential proteomic quantitation was applied to investigate alterations in the proteome in the longissimus muscle (LM) of growing pigs after a 50-d period of supplementation with 0.6% NSPEs in the diet. A total of 51 proteins were found to be differentially expressed in the LM between a control group and the NSPE group. Functional analysis of the differentially expressed protein species showed an increased abundance of proteins related to energy production, protein synthesis, muscular differentiation, immunity, oxidation resistance and detoxification, and a decreased abundance of proteins related to inflammation in the LM of the pigs fed NSPEs. These findings have important implications for understanding the mechanisms whereby dietary supplementation with NSPEs enzymes can promote growth performance and improve muscular metabolism in growing pigs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471598PMC
http://dx.doi.org/10.1631/jzus.B1400266DOI Listing

Publication Analysis

Top Keywords

growing pigs
12
non-starch polysaccharide
12
longissimus muscle
8
muscle growing
8
dietary supplementation
8
polysaccharide enzymes
8
monogastric animals
8
promote growth
8
growth performance
8
skeletal muscle
8

Similar Publications

Excessive inorganic trace elements are added to livestock and poultry feed to meet the needs of animals, accompanied by frequent occurrence of excretion and gastrointestinal stress. Replacing inorganic trace elements with organic trace elements provides a promising solution to alleviate these problems. Therefore, this study aimed to assess the impact of replacing all inorganic trace elements (ITMs) in feed on the growth performance, meat quality, serum parameters, trace element metabolism, and gut microbiota of finishing pigs.

View Article and Find Full Text PDF
Article Synopsis
  • Uterus transplantation is currently the only solution for women with absolute uterine infertility, such as those with Rokitansky syndrome, allowing them to experience pregnancy and childbirth.
  • There are significant challenges with uterus transplantation, including the risks of ischemia-reperfusion injury and a notable thrombotic complication rate of up to 20%, which can lead to graft rejection.
  • This protocol aims to outline the surgical steps for obtaining porcine uteruses and implementing dynamic preservation through machine perfusion, which may reduce hypoxic injury compared to traditional static cold storage methods.
View Article and Find Full Text PDF

The attempt to investigate hepatitis E virus (HEV) contamination in naturally growing mangrove bivalve mollusks captured for local sale in a touristic area of Maranhão state in Brazil revealed the detection of rat hepatitis E virus (ratHEV). Using international standard protocols for processing and nucleic acid extraction, we analyzed 89 bivalve samples (Mytella falcata and Crassostrea rhizophorae) with two broadly reactive assays: heminested pan-Hepeviridae (ORF-1) and probe-based HEV-1 to HEV-4 (ORF-2/ORF-3). Heminested reactions presented 2 (2.

View Article and Find Full Text PDF

Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs.

J Anim Sci Biotechnol

January 2025

Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.

Background: There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming, but these feedstuffs are fibrous in nature. This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs.

Methods: Thirty-six growing barrows (47.

View Article and Find Full Text PDF

Spatiotemporal dynamics of early oogenesis in pigs.

Genome Biol

January 2025

College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.

Background: In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient.

Results: Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!