Molecular Markers and In Vitro Susceptibility to Doxycycline in Plasmodium falciparum Isolates from Thailand.

Antimicrob Agents Chemother

Unité de Parasitologie, Département d'Infectiologie de Terrain, Institut de Recherche Biomédicale des Armées, Marseille, France Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France Centre National de Référence du Paludisme, Marseille, France Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France

Published: August 2015

Determinations of doxycycline 50% inhibitory concentrations (IC50) for 620 isolates from northwest Thailand were performed via the isotopic method, and the data were analyzed by the Bayesian method and distributed into two populations (mean IC50s of 13.15 μM and 31.60 μM). There was no significant difference between the group with low IC50s versus the group with high IC50s with regard to copy numbers of the Plasmodium falciparum tetQ (pftetQ) gene (P = 0.11) or pfmdt gene (P = 0.87) or the number of PfTetQ KYNNNN repeats (P = 0.72).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505297PMC
http://dx.doi.org/10.1128/AAC.00345-15DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
molecular markers
4
markers vitro
4
vitro susceptibility
4
susceptibility doxycycline
4
doxycycline plasmodium
4
falciparum isolates
4
isolates thailand
4
thailand determinations
4
determinations doxycycline
4

Similar Publications

Plasmodium malariae parasites are widely observed across the tropics and sub-tropics. This slow-growing species, known to maintain chronic asymptomatic infections, has been associated with reduced antimalarial susceptibility. We analyse 251 P.

View Article and Find Full Text PDF

Background: The frequent communication between African and Southeast Asian (SEA) countries has led to the risk of imported malaria cases in the China-Myanmar border (CMB) region. Therefore, tracing the origins of new malaria infections is important in the maintenance of malaria-free zones in this border region. A new genotyping tool based on a robust mitochondrial (mt) /apicoplast (apico) barcode was developed to estimate genetic diversity and infer the evolutionary history of Plasmodium falciparum across the major distribution ranges.

View Article and Find Full Text PDF
Article Synopsis
  • Malaria has surged in sub-Saharan Africa due to disruptions from the Covid-19 pandemic, leading to severe cases like cerebral malaria and acute kidney injury.
  • A 22-year-old male from Chad, who presented with confusion and had a history of travel to an endemic area, was initially misdiagnosed but later confirmed to have malaria with severe symptoms.
  • Successful treatment included intravenous artesunate and hemodialysis, and the patient was discharged after 20 days, highlighting the need for quick diagnosis and effective management of malaria complications.
View Article and Find Full Text PDF

malaria affects millions of people in certain regions of the world, with neurological involvement and/or cerebral malaria as potential manifestations. Brain magnetic resonance imaging (MRI) abnormalities have been well-documented in cerebral malaria. However, MRI abnormalities in non-cerebral malaria, especially in neurologically asymptomatic patients, are not well understood and have been less frequently reported, especially in non-endemic regions.

View Article and Find Full Text PDF

Background: Malaria is a significant public health challenge in Uganda, with Plasmodium falciparum (P. falciparum) responsible for most of malaria infections. The high genetic diversity and multiplicity of infection (MOI) associated with P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!