Spinal cord injury (SCI) can cause neuropathic pain (NeP), often reducing a patient's quality of life. We recently reported that granulocyte colony-stimulating factor (G-CSF) could attenuate NeP in several SCI patients. However, the mechanism of action underlying G-CSF-mediated attenuation of SCI-NeP remains to be elucidated. The purpose of the present study was to elucidate the therapeutic effect and mechanism of action of granulocyte colony-stimulating factor for SCI-induced NeP. T9 level contusive SCI was introduced to adult male Sprague Dawley rats. Three weeks after injury, rats received intraperitoneal recombinant human G-CSF (15.0 μg/kg) for 5 days. Mechanical allodynia was assessed using von Frey filaments. Immunohistochemistry and western blot analysis were performed in spinal cord lumbar enlargement samples. Testing with von Frey filaments showed significant increase in the paw withdrawal threshold in the G-CSF group compared with the vehicle group 4 weeks, 5 weeks, 6 weeks and 7 weeks after injury. Immunohistochemistry for CD11b (clone OX-42) revealed that the number of OX-42-positive activated microglia was significantly smaller in the G-CSF group than that in the vehicle rats. Western blot analysis indicated that phosphorylated-p38 mitogen-activated protein kinase (p38MAPK) and interleukin-1β expression in spinal cord lumbar enlargement were attenuated in the G-CSF-treated rats compared with that in the vehicle-treated rats. The present results demonstrate a therapeutic effect of G-CSF treatment for SCI-induced NeP, possibly through the inhibition of microglial activation and the suppression of p38MAPK phosphorylation and the upregulation of interleukin-1β.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2015.05.024DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
granulocyte colony-stimulating
12
colony-stimulating factor
12
weeks weeks
12
mechanical allodynia
8
mechanism action
8
sci-induced nep
8
weeks injury
8
von frey
8
frey filaments
8

Similar Publications

Objectives: Rehabilitation services are crucial for improving the quality of life and overall health of individuals with spinal cord injuries (SCIs). However, access to adequate rehabilitation remains limited in many regions, including Iran. This study aims to explore the barriers faced by individuals with SCIs in accessing appropriate rehabilitation services within Golestan province, northern of Iran.

View Article and Find Full Text PDF

Congenital scoliosis presenting in teenage years outcomes without hemivertebra excision.

Spine Deform

January 2025

Department of Orthopaedics, Spinal Deformity and Pediatric Orthopaedics, Billie and George Ross Center for Advanced Pediatric Orthopaedics and Minimally Invasive Spinal Surgery, Cohen Children's Medical Center, Northwell Hofstra School of Medicine, 7 Vermont Drive, Lake Success, NY, 11042, USA.

Purpose: In congenital scoliosis, the surgical strategy approach of hemivertebra excision, with or without instrumentation and fusion, is a common approach to correction of scoliosis. However, hemivertebra excisions are technically challenging, with potential complications including spinal cord injury, nerve root injury and cerebrospinal fluid leak. The purpose of this study was to determine whether correction of congenital scoliosis can be achieved using a posterior instrumentation/fusion-only approach without the need for hemivertebra excision.

View Article and Find Full Text PDF

Ferroptosis is one of the cell death programs occurring after spinal cord injury (SCI) and is driven by iron-dependent phospholipid peroxidation. However, little is known about its underlying regulation mechanism. The present study demonstrated that lipid peroxidation was promoted in patients with SCI.

View Article and Find Full Text PDF

Lower urinary tract symptoms (LUTS) significantly affect patient quality of life. Treatment options for bladder outlet obstruction (BOO) due to benign prostatic hyperplasia (BPH) (a common cause of LUTS) are insufficient to relieve discomfort. As the incidence of BPH is increasing, new pharmacological targets for LUTS treatment are required.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!