dbHiMo: a web-based epigenomics platform for histone-modifying enzymes.

Database (Oxford)

Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland, Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151-921, Korea, Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea, and Research Institute of Agriculture and Life Sciences, Center for Fungal Pathogenesis, Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland, Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151-921, Korea, Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea, and Research Institute of Agriculture and Life Sciences, Center for Fungal Pathogenesis, Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland, Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151-921, Korea, Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea, and Research Institute of Agriculture and Life Sciences, Center for Fungal Pathogenesis, Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland, Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151-921, Korea, Department of Agricultural Biotechnology, College of Agriculture

Published: March 2016

Over the past two decades, epigenetics has evolved into a key concept for understanding regulation of gene expression. Among many epigenetic mechanisms, covalent modifications such as acetylation and methylation of lysine residues on core histones emerged as a major mechanism in epigenetic regulation. Here, we present the database for histone-modifying enzymes (dbHiMo; http://hme.riceblast.snu.ac.kr/) aimed at facilitating functional and comparative analysis of histone-modifying enzymes (HMEs). HMEs were identified by applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 11,576 HMEs identified from 603 proteomes including 483 fungal, 32 plants and 51 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. With comprehensive data entries and associated web-based tools, our database will be a valuable resource for future epigenetics/epigenomics studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460409PMC
http://dx.doi.org/10.1093/database/bav052DOI Listing

Publication Analysis

Top Keywords

histone-modifying enzymes
12
hmes identified
8
dbhimo web-based
4
web-based epigenomics
4
epigenomics platform
4
platform histone-modifying
4
enzymes decades
4
decades epigenetics
4
epigenetics evolved
4
evolved key
4

Similar Publications

Maternal obesity alters histone modifications mediated by the interaction between Ezh2 and Ampk, impairing neural differentiation in the developing embryonic brain cortex.

J Biol Chem

January 2025

Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, UAE. Electronic address:

Neurodevelopmental disorders have complex origins that manifest early during embryonic growth and are associated with intricate gene regulation dynamics. A perturbed metabolic environment such as hyperglycemia or dyslipidemia, particularly due to maternal obesity, poses a threat to the optimal development of the embryonic central nervous system. Accumulating evidence suggests that these metabolic irregularities during pregnancy may alter neurogenesis pathways, thereby predisposing the developing fetus to neurodevelopmental disorders.

View Article and Find Full Text PDF

Post-transcriptional regulation of the transcriptional apparatus in neuronal development.

Front Mol Neurosci

December 2024

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.

Post-transcriptional mechanisms, such as alternative splicing and polyadenylation, are recognized as critical regulatory processes that increase transcriptomic and proteomic diversity. The advent of next-generation sequencing and whole-genome analyses has revealed that numerous transcription and epigenetic regulators, including transcription factors and histone-modifying enzymes, undergo alternative splicing, most notably in the nervous system. Given the complexity of regulatory processes in the brain, it is conceivable that many of these splice variants control different aspects of neuronal development.

View Article and Find Full Text PDF

In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signaling by oxidising crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM).

View Article and Find Full Text PDF

In obesity, C-C chemokine ligand 2 (CCL2) plays a critical role in recruiting macrophages to white adipose tissue (WAT), contributing to chronic inflammation. In this study, we sought to explore the effects of fish oil (FO) on CCL2 expression and histone (H3K27)-modifying enzymes in both human model of preadipocytes and primary adipose-derived stem cells (ASCs). Present findings in preadipocytes lineage evidenced that lipopolysaccharide (LPS) increased (∼5.

View Article and Find Full Text PDF

Transcriptomic analysis and epigenetic regulators in human oocytes at different stages of oocyte meiotic maturation.

Dev Biol

December 2024

Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal; CINTESIS@RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal. Electronic address:

Human oocytes are highly specialized cells with the capacity to store and regulate mRNAs during oocyte maturation, in preparation for post-fertilization steps. Here we performed single-oocyte transcriptomic analysis of human oocytes in three meitoic maturation stages - Germinal Vesicle (GV; n = 6), Metaphase I (MI; n = 6) and Metaphase II (MII; n = 7). Single-oocyte transcriptomic analysis revealed that the total number of expressed genes progressively decreased from GV to MII stages, with 9660 genes being transcribed in GV, 8734 in MI and 5889 in MII.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!