Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Perirectal spacing, whereby biomaterials are placed between the prostate and rectum, shows promise in reducing rectal dose during prostate cancer radiation therapy. A prospective multicenter randomized controlled pivotal trial was performed to assess outcomes following absorbable spacer (SpaceOAR system) implantation.
Methods And Materials: Overall, 222 patients with clinical stage T1 or T2 prostate cancer underwent computed tomography (CT) and magnetic resonance imaging (MRI) scans for treatment planning, followed with fiducial marker placement, and were randomized to receive spacer injection or no injection (control). Patients received postprocedure CT and MRI planning scans and underwent image guided intensity modulated radiation therapy (79.2 Gy in 1.8-Gy fractions). Spacer safety and impact on rectal irradiation, toxicity, and quality of life were assessed throughout 15 months.
Results: Spacer application was rated as "easy" or "very easy" 98.7% of the time, with a 99% hydrogel placement success rate. Perirectal spaces were 12.6 ± 3.9 mm and 1.6 ± 2.0 mm in the spacer and control groups, respectively. There were no device-related adverse events, rectal perforations, serious bleeding, or infections within either group. Pre-to postspacer plans had a significant reduction in mean rectal V70 (12.4% to 3.3%, P<.0001). Overall acute rectal adverse event rates were similar between groups, with fewer spacer patients experiencing rectal pain (P=.02). A significant reduction in late (3-15 months) rectal toxicity severity in the spacer group was observed (P=.04), with a 2.0% and 7.0% late rectal toxicity incidence in the spacer and control groups, respectively. There was no late rectal toxicity greater than grade 1 in the spacer group. At 15 months 11.6% and 21.4% of spacer and control patients, respectively, experienced 10-point declines in bowel quality of life. MRI scans at 12 months verified spacer absorption.
Conclusions: Spacer application was well tolerated. Increased perirectal space reduced rectal irradiation, reduced rectal toxicity severity, and decreased rates of patients experiencing declines in bowel quality of life. The spacer appears to be an effective tool, potentially enabling advanced prostate RT protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2015.04.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!