A folded and immunogenic IgE-hyporeactive variant of the major allergen Phl p 1 produced in Escherichia coli.

BMC Biotechnol

Dept. of Immunotechnology, Lund University, Medicon Village building 406, S-223 81, Lund, Sweden.

Published: June 2015

Background: Group 1 grass pollen allergens are a major cause of allergic disease. Specific immunotherapy involving controlled administration of allergens can be used as a disease-modifying treatment for such disease. Recombinant allergen variants with reduced IgE binding capacity may be used as component in such vaccines, as they may induce fewer treatment side effects than materials currently in use. A mutated variant of the immunodominant C-terminal domain of the group 1 grass pollen allergen Phl p 1 was recently established through an approach that used a set of human monoclonal IgE as a guide to identify mutations that disturbed IgE-allergen interactions. Further analysis of this domain is required to establish its potential for use in treatment.

Methods: GST-tagged wild-type and mutated C-terminal domains of Phl p 1 were produced in Escherichia coli TUNER(DE3). The products were purified by affinity chromatography on immobilized glutathione. GST was removed by enzymatic cleavage and tag-free products were purified by size exclusion chromatography. Products were assessed by SDS-PAGE, circular dichroism spectroscopy, differential scanning fluorimetry and dynamic light scattering. Rats were immunized with GST-tagged and tag-free mutated C-terminal domain of Phl p 1. Antigen-binding properties of induced antibodies were assessed by immunochemical analysis.

Results: The mutated domain has a structure very similar to that of the wild-type domain as determined by circular dichroism, but a reduced thermal stability. Immunization of rats demonstrates that this IgE-hyporeactive domain, despite its three sequence modifications (K8A, N11A, D55A), is able to induce antibodies that substantially block the binding of allergic subjects' IgE to the wild-type allergen.

Conclusions: It is concluded that this IgE-hyporeactive molecule can be produced in folded form and that it is able to induce an antibody response that efficiently competes with IgE recognition of Phl p 1. These findings suggest that it, or a further evolved variant thereof, is a candidate for use as a component in specific immunotherapy against grass pollen allergy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460866PMC
http://dx.doi.org/10.1186/s12896-015-0150-zDOI Listing

Publication Analysis

Top Keywords

grass pollen
12
allergen phl
8
phl produced
8
produced escherichia
8
escherichia coli
8
group grass
8
specific immunotherapy
8
c-terminal domain
8
mutated c-terminal
8
products purified
8

Similar Publications

The purpose of this study was to compare the efficacy and safety of subcutaneous, sublingual, oral specific immunotherapy in patients who suffer from allergic conditions to pollen from trees, grasses and weeds, house dust mites and Alternaria alternata spores. A literature search was performed separately for each type of allergen and each administration route of the drug. As a result, it was found that all administration routes were quite effective.

View Article and Find Full Text PDF

Mitochondrial genome structural variants and candidate cytoplasmic male sterility-related gene in sugarcane.

BMC Genomics

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.

Background: Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars.

View Article and Find Full Text PDF

Overexpression of the general transcription factor OsTFIIB5 alters rice development and seed quality.

Plant Cell Rep

January 2025

Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India.

Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions.

View Article and Find Full Text PDF

A Retrospective Comparison of Aeroallergen Sensitization Among Different Allergic Diseases in Guangzhou, China.

Mediators Inflamm

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.

Numerous studies have reported on the types of aeroallergen sensitization in various pediatric allergic diseases, but limited data compared the types of aeroallergen sensitization across different pediatric allergic diseases. The aim of this study is to explore the nature and significance of aeroallergen sensitization in diverse pediatric allergic conditions. A comparative analysis was carried out on aeroallergen sensitization in children suffering from allergic diseases who visited the Otolaryngology, Respiratory, and Dermatology Departments between January 2019 and December 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!