Dendrimers in Nanoscale Confinement: The Interplay between Conformational Change and Nanopore Entrance.

Nano Lett

‡Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London WC1H0AJ, England, United Kingdom.

Published: July 2015

Hyperbranched dendrimers are nanocarriers for drugs, imaging agents, and catalysts. Their nanoscale confinement is of fundamental interest and occurs when dendrimers with bioactive payload block or pass biological nanochannels or when catalysts are entrapped in inorganic nanoporous support scaffolds. The molecular process of confinement and its effect on dendrimer conformations are, however, poorly understood. Here, we use single-molecule nanopore measurements and molecular dynamics simulations to establish an atomically detailed model of pore dendrimer interactions. We discover and explain that electrophoretic migration of polycationic PAMAM dendrimers into confined space is not dictated by the diameter of the branched molecules but by their size and generation-dependent compressibility. Differences in structural flexibility also rationalize the apparent anomaly that the experimental nanopore current read-out depends in nonlinear fashion on dendrimer size. Nanoscale confinement is inferred to reduce the protonation of the polycationic structures. Our model can likely be expanded to other dendrimers and be applied to improve the analysis of biophysical experiments, rationally design functional materials such as nanoporous filtration devices or nanoscale drug carriers that effectively pass biological pores.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5b01960DOI Listing

Publication Analysis

Top Keywords

nanoscale confinement
12
pass biological
8
dendrimers
5
dendrimers nanoscale
4
confinement
4
confinement interplay
4
interplay conformational
4
conformational change
4
change nanopore
4
nanopore entrance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!