A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast Electron Transfer Exchange at Self-Assembled Monolayers of Organometallic Ruthenium(II) σ-Arylacetylide Complexes. | LitMetric

A new series of ruthenium organometallic carbon-rich complexes, exhibiting fast electron transfer kinetics combined to a low oxidation potential, was synthesized for self-assembled monolayer (SAM) formation on gold surfaces. The molecules consist of highly conjugated ruthenium(II) mono(σ-arylacetylide) or bis(σ-arylacetylide) complexes functionalized with different bridge units with specific (protected) anchoring groups that possess high affinity for gold, such as thiol, carbodithioate, and isocyanide. Single component and mixed SAMs were prepared and fully characterized by wettability studies, infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS), and electrochemical analyses. By applying the Laviron's formalism, fast electron transfer kinetics (≈10(4) s(-1)) were found at the derived self-assemblies while no significant effect could have been evidenced with variation of the bridging unit and of the anchoring moiety. Interestingly, a hexyl aliphatic spacer in the bridging unit with a thiol group and dilution with suitable nonelectroactive thiols lead to better SAM organization and packing, in comparison with undiluted complexes with shorter spacers. Such features make these compounds suitable alternatives to the widely used ferrocene center as redox-active building blocks for reversible charge storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b01629DOI Listing

Publication Analysis

Top Keywords

fast electron
12
electron transfer
12
transfer kinetics
8
bridging unit
8
transfer exchange
4
exchange self-assembled
4
self-assembled monolayers
4
monolayers organometallic
4
organometallic rutheniumii
4
rutheniumii σ-arylacetylide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!