How sociality evolves and is maintained remains a key question in evolutionary biology. Most studies to date have focused on insects, birds, and mammals but data from a wider range of taxonomic groups are essential to identify general patterns and processes. The extent of social behaviour among squamate reptiles is under-appreciated, yet they are a promising group for further studies. Living in aggregations is posited as an important step in the evolution of more complex sociality. We review data on aggregations among squamates and find evidence for some form of aggregations in 94 species across 22 families. Of these, 18 species across 7 families exhibited 'stable' aggregations that entail overlapping home ranges and stable membership in long-term (years) or seasonal aggregations. Phylogenetic analysis suggests that stable aggregations have evolved multiple times in squamates. We: (i) identify significant gaps in our understanding; (ii) outline key traits which should be the focus of future research; and (iii) outline the potential for utilising reproductive skew theory to provide insights into squamate sociality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/brv.12201 | DOI Listing |
J Exp Biol
January 2025
Mount Allison University, Sackville, New Brunswick, Canada.
The embryonic environment is critical for the development of many ectothermic vertebrates, which makes them highly vulnerable to environmental change. Changes in temperature and moisture, in particular, are known to influence embryo survival and offspring phenotypes. While most papers concerning phenotypic development of terrestrial ectotherms focus on the role of temperature on eggs and embryos, the comparatively small number of studies on the effects of substrate moisture are well suited for quantitative analysis aimed at guiding future research.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2025
Biological Sciences, Southeastern Oklahoma State University, Durant, OK 74701, USA.
Exposure to acute stressors can induce multiple physiological changes in vertebrates such as altering circulating hormone and enzyme levels as well as leukocyte counts, and interactions between endocrine and immune function may produce suites of physiological changes following acute stress. Previously, we showed that presence of human observers elicited only a weak elevation of plasma corticosterone levels in cottonmouths. Additional variables, however, must be considered to understand if changes in physiological parameters are highly generalized or vary among sexes or with context.
View Article and Find Full Text PDFPeerJ
December 2024
Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
, the earliest known ceratopsian, is represented by dozens of specimens of different sizes collected from the Upper Jurassic of the Junggar Basin, northwestern China. Here, we present the first comprehensive study on the bone histology of based on ten specimens varying in size. Four ontogenetic stages are recognized: early juvenile, late juvenile, subadult, and adult.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria.
The evolution of cornified skin appendages, such as hair, feathers, and claws, is closely linked to the evolution of proteins that establish the unique mechanical stability of these epithelial structures. We hypothesized that the evolution of the limbless body anatomy of the Florida worm lizard (Rhineura floridana) and the concomitant loss of claws had led to the degeneration of genes with claw-associated functions. To test this hypothesis, we investigated the evolution of three gene families implicated in epithelial cell architecture, namely type I keratins, type II keratins, and genes of the epidermal differentiation complex in R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!