Nano-porous calcium phosphate balls.

Colloids Surf B Biointerfaces

Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany. Electronic address:

Published: August 2015

By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.05.021DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
8
electron microscopy
8
supramolecular structures
8
nano-porous calcium
4
phosphate balls
4
balls dropping
4
dropping nah2po4·h2o
4
nah2po4·h2o precursor
4
precursor solution
4
solution cacl2
4

Similar Publications

Background: Limitations to using the knee as donor cartilage include cartilage thickness mismatch and donor site morbidity. Using the radial head as donor autograft for capitellar lesions may allow for local graft harvest without distant donor site morbidity. The purpose of this study is to demonstrate the feasibility of performing local osteochondral autograft transfer from the nonarticular cartilaginous rim of the radial head to the capitellum.

View Article and Find Full Text PDF

Calcium phosphate formation and deposition in ischemic neurons.

PLoS One

January 2025

Biomedical Engineering Department, Northwestern University, Evanston, IL, United States of America.

Ischemic stroke causes acute brain calcium phosphate (CaP) deposition, a process involving primarily the injured neurons. Whereas the adverse impact of CaP deposition on the brain structure and function has been recognized, the underlying mechanisms remain poorly understood. This investigation demonstrated that the neuron-expressed, plasma membrane-associated Ca2+-binding proteins annexin (Anx) A2, AnxA5, AnxA6, and AnxA7 contributed to neuronal CaP deposition in the mouse model of ischemic stroke.

View Article and Find Full Text PDF

Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.

View Article and Find Full Text PDF

The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.

View Article and Find Full Text PDF

Aim: 3D-printed scaffolds loaded with healing directed agents could be employed for better treatment outcome in regenerative dentistry. The aim of this study was to fabricate and characterize simple 3D-printed poly lactic acid (PLA) scaffolds coated with nanoHydroxyapatite (nHA), Naringin (NAR), or their combination, and testing their morphological, chemical, mechanical, antibacterial, biocompatible and bioactive properties.

Methodology: Two variants pore sizes, 300 and 700 μm, of 3D-printed PLA disc scaffolds measuring (10 × 1 mm) were fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!