Bitumen mining in the Athabasca oil sands region of northern Alberta results in the accumulation of large volumes of oil sands process-affected water (OSPW). The acid-extractable organic (AEO) fraction of OSPW contains a variety of compounds, including naphthenic acids, aromatics, and sulfur- and nitrogen-containing compounds that are toxic to aquatic and terrestrial organisms. We have studied the effect of AEO treatment on the transcriptome of root and shoot tissues in seedlings of the model plant, Arabidopsis thaliana. Several genes encoding enzymes involved in the xenobiotic detoxification pathway were upregulated, including cytochrome P450s (CYPs), UDP-dependent glycosyltransferases (UGTs), glutathione-S-transferases (GSTs), and membrane transporters. In addition, gene products involved in oxidative stress, β-oxidation, and glucosinolate degradation were also upregulated, indicating other potential mechanisms of the adaptive response to AEO exposure. These results provide insight into the pathways that plants use to detoxify the organic acid component of OSPW. Moreover, this study advances our understanding of genes that could be exploited to potentially develop phytoremediation and biosensing strategies for AEO contaminants resulting from oil sands mining.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2015.05.048 | DOI Listing |
Environ Microbiol
January 2025
Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, College of Life Science, Yulin University, Yulin 719000, China.
The genus of L. are Tertiary-relict desert sand-fixing plants, which are an important forage and agricultural product, as well as an important source of medicinal and woody vegetable oil. In order to provide a theoretical basis for better protection and utilization of species in the L.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, Saskatchewan S7N 5A9, Canada; University of Lethbridge, Office of the Vice President (Research), Lethbridge, Alberta, Canada. Electronic address:
Naphthenic acids and naphthenic acid fraction compounds (NAFCs) are associated with production of unconventional petroleum resources, especially the Athabasca Oil Sands of Alberta, Canada. This complex mixture of acidic organic compounds is toxic to a variety of taxa, and so represents an important environmental management challenge. Thus, there is clear motivation to better understand the occurrence and characteristics of NAFCs in aquatic environments, their chemical behaviour, and environmental fate.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
Microplastic pollution has become a pervasive environmental challenge due to their global distribution and putatively harmful effects on organisms at different ecotoxicological endpoints. However, in some cases, the effects of microplastics are similar to, or even less harmful than those of naturally occurring particles. Bioplastics, developed as a more sustainable alternative to traditional plastics, still have unclear effects compared with oil-based microplastics.
View Article and Find Full Text PDFToxics
December 2024
School of Resource and Environmental Engineering, Shandong University of Technology, Zibo 255000, China.
The solid phase composition in oily sludge (OS) is a key factor affecting the oil-solid separation of OS. In this paper, the effects and mechanisms of solid-phase particle factors on the oil content of residue phase were investigated in order to improve the oil-solid separation efficiency. Flotation experiments were carried out on single-size sand and mixed-size sand OS consisting of three particle sizes at room temperature without adding flotation reagents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!