Spectrins are a part of cytoskeletal platform that lines the intracellular side of plasma membrane, which can be proteolyzed by calcium-sensitive enzymes including calpains and caspases. Caspase-3 mediated αII-spectrin proteolysis results in the release of a 120kDa spectrin breakdown product (SBDP120), known to occur in conditions with cell death. In rodents, intraneuronal SBDP120 accumulation in the forebrain develops with age, which is enhanced in transgenic models of Alzheimer's disease (AD). The present study was set to explore age-related SBDP120 formation and its relevance to AD-type hallmark lesions in the human brains. SBDP120 immunoreactivity (IR) was detected in neuronal somata and dendrites in the cortex and hippocampal formation in postmortem brains from aged (n=10, mean age=84.2) and AD (n=10, mean age=84.8) subjects, but not mid-aged controls (n=10, mean age=58.2). The overall density of SBDP120 IR quantified in the temporal neocortex was increased in the aged and AD groups, more robust in the latter, relative to mid-aged control, while no regional, laminar or cellular association was found between SBDP120 accumulation and Aβ deposition or phosphorylated-tau aggregation. In cultured rat retinal ganglion cells (RGC-5), SBDP120 elevation occurred with caspase-3 activation following oxygen as well as serum deprivation, suggestive of SBDP120 formation in stressful conditions with and without apparent neuronal death. These results confirm an age-related intraneuronal SBDP120 accumulation in the human cerebrum that is enhanced in AD. This neuronal change appears to occur independent of amyloid deposition, tau pathology and overt neuronal death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exger.2015.06.003 | DOI Listing |
Neurol Sci
April 2023
School of Sports Medicine and Rehabilitation, Beijing Sport University, Haidian District, No. 48 Xinxi Road, Beijing, 102211, China.
Background: Spectrin Breakdown Products (SBDPs) accumulate in the brain after traumatic brain injury (TBI) and are expected to become a potentially promising biomarker of TBI.
Objective: This systematic review and meta-analysis were undertaken to evaluate the role of SBDPs in the diagnosis and prognosis of TBI.
Methods: We systematically searched the following databases up to 31 October 2022: Ovid MEDLINE, PubMed, EMBASE, Cochrane Library, and Web of Science Database, and studies were only included if they had sufficient data on SBDP concentrations in TBI patients.
Exp Gerontol
September 2015
Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan 410013, China. Electronic address:
Spectrins are a part of cytoskeletal platform that lines the intracellular side of plasma membrane, which can be proteolyzed by calcium-sensitive enzymes including calpains and caspases. Caspase-3 mediated αII-spectrin proteolysis results in the release of a 120kDa spectrin breakdown product (SBDP120), known to occur in conditions with cell death. In rodents, intraneuronal SBDP120 accumulation in the forebrain develops with age, which is enhanced in transgenic models of Alzheimer's disease (AD).
View Article and Find Full Text PDFApoptosis
November 2009
Center of Innovative Research, Banyan Biomarkers Inc., Alachua, FL 32615, USA.
Apoptosis and oncotic necrosis in neuronal and glial cells have been documented in many neurological diseases. Distinguishing between these two major types of cell death in different neurological diseases is needed in order to better reveal the injury mechanisms so as to open up opportunities for therapy development. Accumulating evidence suggests apoptosis and oncosis epitomize the extreme ends of a broad spectrum of morphological and biochemical events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!