First tetrazole-bridged d-f heterometallic MOFs with a large magnetic entropy change.

Chem Commun (Camb)

Key Laboratory of Advanced Energy Material Chemistry, Tianjin Co-Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.

Published: July 2015

A novel 3D tetrazole-bridged 3d-4f heterometallic MOF {(H3O)3[Gd3Mn2(Trz)4]·12H2O}n (1) with a hexanuclear [Gd6] cluster was obtained via in situ [2+3] cycloaddition reaction and structurally characterized, possessing good solvent and thermal stabilities, as well as a large magnetic entropy change -ΔS(m) = 40.3 J kg(-1) K(-1) for ΔH = 7 T at 2.0 K. To our knowledge, it is the first example of tetrazole-bridged 3d-4f heterometallic MOFs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc03670dDOI Listing

Publication Analysis

Top Keywords

heterometallic mofs
8
large magnetic
8
magnetic entropy
8
entropy change
8
tetrazole-bridged 3d-4f
8
3d-4f heterometallic
8
tetrazole-bridged d-f
4
d-f heterometallic
4
mofs large
4
change novel
4

Similar Publications

Global clean energy demands can be effectively addressed using the promising approach of hydrogen energy generation combined with less energy consumption. Hydrogen can be generated, and urea-rich wastewater pollution can be mitigated in a low-energy manner using the urea oxidation reaction (UOR). This paper seeks to assemble a unique electrocatalyst of a pristine 2D MOF, [Co(HBTC)(DMF)] (Co-MUM-3), from 1,3,5-benzenetricarboxylate (BTC) to oxidize urea in simulated seawater.

View Article and Find Full Text PDF

There has long been a pursuit for a metal-organic framework (MOF)-based adsorbent for various hydrocarbon separations. Herein, we utilized simple trimesic acid and 1,2,4-triazole, together with the heterometallic strategy to produce two quaternary MOFs with a kgm-type structure. The cooperative coordination allows the immobilization of metal clusters into the pore channels, creating an appropriate pore size and high density of open metal sites.

View Article and Find Full Text PDF

The increasing use of Metal-Organic Frameworks (MOFs) in separation, catalysis, or storage is linked to the targeted modification of their composition or porosity metrics. While modification of pore shape and size necessarily implies the assembly of alternative nets, compositional changes often rely on postsynthetic modification adapted to the functionalization or exchange of the organic linker or the modification of the inorganic cluster by metal exchange methods. We describe an alternative methodology that enables the integration of both types of modification, structural and compositional, in titanium MOFs by metal exchange reaction of the heterometallic cluster TiCa.

View Article and Find Full Text PDF

Isoreticular chemistry, which enables property optimization by changing compositions without changing topology, is a powerful synthetic strategy. One of the biggest challenges facing isoreticular chemistry is to extend it to ligands with strongly coordinating substituent groups such as unbound -COOH, because competitive interactions between such groups and metal ions can derail isoreticular chemistry. It is even more challenging to have an isoreticular series of carboxyl-functionalized MOFs capable of encompassing chemically disparate metal ions.

View Article and Find Full Text PDF

New heterometallic antenna terephthalate MOFs, namely, (EuM)bdc·4HO (M = Y, La, Gd) (x = 0.001-1), were synthesized by a one-step method from aqueous solutions. The resulting compounds are isomorphic to each other; the crystalline phase corresponds to Lnbdc∙4HO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!