The RNA recognition motif (RRM) is the far most abundant RNA binding domain. In addition to the typical β1α1β2β3α2β4 fold, various sub-structural elements have been described and reportedly contribute to the high functional versatility of RRMs. The heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a highly abundant protein of 64 kDa comprising four RRM domains. Involved in many aspects of RNA metabolism, hnRNP L specifically binds to RNAs containing CA repeats or CA-rich clusters. However, a comprehensive structural description of hnRNP L including its sub-structural elements is missing. Here, we present the structural characterization of the RRM domains of hnRNP L and demonstrate their function in repressing exon 4 of SLC2A2. By comparison of the sub-structural elements between the two highly similar paralog families of hnRNP L and PTB, we defined signatures underlying interacting C-terminal coils (ICCs), the RRM34 domain interaction and RRMs with a C-terminal fifth β-strand, a variation we denoted vRRMs. Furthermore, computational analysis revealed new putative ICC-containing RRM families and allowed us to propose an evolutionary scenario explaining the origins of the ICC and fifth β-strand sub-structural extensions. Our studies provide insights of domain requirements in alternative splicing mediated by hnRNP L and molecular descriptions for the sub-structural elements. In addition, the analysis presented may help to classify other abundant RRM extensions and to predict structure-function relationships.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2015.05.020 | DOI Listing |
Cell
April 2024
University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland. Electronic address:
Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2022
Department of Industrial Engineering, University of Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, Italy.
Gastric diseases are one of the most relevant healthcare problems worldwide. Interventions and therapies definition/design mainly derive from biomedical and clinical expertise. Computational biomechanics, with particular regard to the finite element method, provides hard-to-measure quantities during in-vivo tests, such as strain and stress distribution, leading to a more comprehensive and promising approach to improve the effectiveness of many different clinical activities.
View Article and Find Full Text PDFCurr Opin Struct Biol
February 2021
University of Geneva, Department of Cell Biology, Sciences III, Geneva, Switzerland. Electronic address:
The centriole is a magnificent molecular assembly of several giga-daltons, one of the largest of the eukaryotic cell, and whose atomic structure remains unsolved to date. However, numerous electron microscopy, cryo-tomography, and super-resolution studies now make it possible to establish a global architectural view of it with its different sub-regions. These analyses broaden our understanding by providing additional informations to cell biology and structural biology approaches.
View Article and Find Full Text PDFSci Rep
August 2019
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
Hyaluronic acid (HA) based biomaterials have several biomedical applications. HA biosynthesis is catalysed by hyaluronan synthase (HAS). The unavailability of 3-D structure of HAS and gaps in molecular understanding of HA biosynthesis process pose challenges in rational engineering of HAS to control HA molecular weight and titer.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2019
Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, UK.
Development of a class of bicyclic inhibitors of the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG), starting from known compounds with activity against a related parasite PKG orthologue, is reported. Examination of key sub-structural elements led to new compounds with good levels of inhibitory activity against the recombinant kinase and in vitro activity against the parasite. Key examples were shown to possess encouraging in vitro ADME properties, and computational analysis provided valuable insight into the origins of the observed activity profiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!