MiR-26a Rescues Bone Regeneration Deficiency of Mesenchymal Stem Cells Derived From Osteoporotic Mice.

Mol Ther

Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China; Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Shaanxi, P.R. China. Electronic address:

Published: August 2015

Osteoporosis, caused by a relative increase of bone resorption over bone formation, is characterized by decreased bone mass and bone strength, resulting in an increased incidence of bone fractures, which often leads to further disability and early mortality in the elderly due to impaired bone healing ability. The majority of therapeutics currently used in clinics for the treatment of osteoporosis are antiresorptive agents that exert their clinical effect by decreasing the rate of bone resorption. However, strategies solely aimed at antiresorption have limited therapeutic efficacy in restoring bone remodeling balance and enhancing osteoporotic fracture healing. Here, we report that miR-26a plays a critical role in modulating bone formation during osteoporosis. We found that miR-26a treatment could effectively improve the osteogenic differentiation capability of mesenchymal stem cells isolated from littermate-derived ovariectomized osteoporotic mice both in vitro and in vivo. MiR-26a exerts its effect by directly targeting Tob1, the negative regulator of BMP/Smad signaling pathway by binding to the 3'-untranslated region and thus repressing Tob1 protein expression. Our findings indicate that miR-26a may be a promising therapeutic candidate to enhance bone formation in treatment of osteoporosis and to promote bone regeneration in osteoporotic fracture healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817873PMC
http://dx.doi.org/10.1038/mt.2015.101DOI Listing

Publication Analysis

Top Keywords

bone
12
bone formation
12
bone regeneration
8
mesenchymal stem
8
stem cells
8
osteoporotic mice
8
bone resorption
8
treatment osteoporosis
8
osteoporotic fracture
8
fracture healing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!