The stacking orders in few-layer graphene (FLG) strongly influences the electronic properties of the material. To explore the stacking-specific properties of FLG in detail, one needs powerful microscopy techniques that visualize stacking domains with sufficient spatial resolution. We demonstrate that infrared (IR) scattering scanning near-field optical microscopy (sSNOM) directly maps out the stacking domains of FLG with a nanometric resolution, based on the stacking-specific IR conductivities of FLG. The intensity and phase contrasts of sSNOM are compared with the sSNOM contrast model, which is based on the dipolar tip-sample coupling and the theoretical conductivity spectra of FLG, allowing a clear assignment of each FLG domain as Bernal, rhombohedral, or intermediate stacks for tri-, tetra-, and pentalayer graphene. The method offers 10-100 times better spatial resolution than the far-field Raman and infrared spectroscopic methods, yet it allows far more experimental flexibility than the scanning tunneling microscopy and electron microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b02813DOI Listing

Publication Analysis

Top Keywords

few-layer graphene
8
stacking domains
8
spatial resolution
8
flg
6
stacking
4
stacking structures
4
structures few-layer
4
graphene revealed
4
revealed phase-sensitive
4
phase-sensitive infrared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!