A new, rapid Fourier transform near infrared (FT-NIR) spectroscopic procedure is described to screen for the authenticity of extra virgin olive oils (EVOO) and to determine the kind and amount of an adulterant in EVOO. To screen EVOO, a partial least squares (PLS1) calibration model was developed to estimate a newly created FT-NIR index based mainly on the relative intensities of two unique carbonyl overtone absorptions in the FT-NIR spectra of EVOO and other mixtures attributed to volatile (5280 cm(-1)) and non-volatile (5180 cm(-1)) components. Spectra were also used to predict the fatty acid (FA) composition of EVOO or samples spiked with an adulterant using previously developed PLS1 calibration models. Some adulterated mixtures could be identified provided the FA profile was sufficiently different from those of EVOO. To identify the type and determine the quantity of an adulterant, gravimetric mixtures were prepared by spiking EVOO with different concentrations of each adulterant. Based on FT-NIR spectra, four PLS1 calibration models were developed for four specific groups of adulterants, each with a characteristic FA composition. Using these different PLS1 calibration models for prediction, plots of predicted vs. gravimetric concentrations of an adulterant in EVOO yielded linear regression functions with four unique sets of slopes, one for each group of adulterants. Four corresponding slope rules were defined that allowed for the determination of the nature and concentration of an adulterant in EVOO products by applying these four calibration models. The standard addition technique was used for confirmation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11745-015-4038-4DOI Listing

Publication Analysis

Top Keywords

pls1 calibration
16
calibration models
16
adulterant evoo
12
evoo
9
extra virgin
8
virgin olive
8
ft-nir spectra
8
concentrations adulterant
8
adulterant
6
calibration
5

Similar Publications

Two accurate, precise and robust multivariate chemometric methods were developed for the simultaneous determination of montelukast sodium (MON), rupatadine fumarate (RUP) and desloratadine (DES). These methods provide a cost-effective alternative to chromatographic techniques by utilizing spectrophotometry in pharmaceutical quality control. The proposed approaches, partial least squares-1 (PLS-1) and artificial neural network (ANN), were optimized using genetic algorithm (GA) to select the most influential wavelengths, enhancing model performance.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) was utilized to measure low-level fentanyl concentrations mixed in common cutting agents, cocaine, 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine, and caffeine. Mixtures were prepared with a fentanyl concentration range of 0-339 μM. Data was initially analyzed by plotting the area of a diagnostic peak (1026 cm) against concentration to generate a calibration model.

View Article and Find Full Text PDF

Calibration transfer between NIR instruments using optimally predictive calibration subsets.

Anal Bioanal Chem

October 2024

Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090, Brussels, Belgium.

In this study, a new approach for the selection of informative standardization samples from the original calibration set for the transfer of a calibration model between NIR instruments is proposed and evaluated. First, a calibration model is developed, after variable selection by the Final Complexity Adapted Models (FCAM) method, using the significance of the PLS regression coefficients (FCAM-SIG) as selection criterion. Then, the resulting model is used for the selection of the best fitting subset of calibration samples with optimally predictive ability, called the optimally predictive calibration subset (OPCS).

View Article and Find Full Text PDF

A fast and non-separative screening strategy is presented for the analysis of five urinary metabolites of polycyclic aromatic hydrocarbons (PAHs), namely 2-naphthol, 1-acenaphthenol, 2-hydroxyfluorene, 9-phenanthrol and 1-hydroxypyrene. These hydroxylated derivatives (OH-PAHs) were subjected to enzymatic hydrolysis and were extracted from urine using a liquid-liquid extraction (LLE). The profile signals were obtained by direct injection of the sample into a programmed temperature vaporizer coupled to a quadrupole mass spectrometer via a deactivated fused silica tubing (PTV-qMS).

View Article and Find Full Text PDF

The Prediction of Quality Parameters of Craft Beer with FT-MIR and Chemometrics.

Foods

April 2024

Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas-Zacatenco, Av. Wilfrido Massieu S/N, Esq. Cda. Miguel Stampa, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico.

Beer is one of the oldest and most known alcoholic beverages whose organoleptic characteristics are the attributes that the consumer seeks, which is why it is essential to ensure proper quality control of the final product. Fourier transform mid-infrared (FT-MIR) spectroscopy coupled with multivariate analysis can be an alternative to traditional methods to predict quality parameters in craft beer. This study aims to develop prediction models based on FT-MIR spectroscopy to simultaneously quantify quality parameters (color, specific gravity, alcohol volume, bitterness, turbidity, pH, and total acidity) in craft beer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!