Role of fumonisin B1 on the immune system, histopathology, and muscle proteins of white shrimp (Litopenaeus vannamei).

Food Chem

Laboratorio de Productos Marinos, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Apdo. Postal 1658, 83000 Hermosillo, Sonora, Mexico. Electronic address:

Published: September 2008

White shrimps, Litopenaeus vannamei, were tested in two indoor trials to determine the effect of fumonisin B1 on (i) immune response, (ii) histopathology, and, (iii) muscle proteins. Trial 1: (0, 0.5, 0.75 and 1.0μg/g of FB1 levels, 18-day duration; shrimp 5-6g) to evaluate the FB1 effect on the immune system and histopathology response. Trial 2: (0.0, 0.5, 0.75 and 1.0μg/g of FB1 levels, 16-day duration; shrimp 5-6g) to detect FB1 effect on muscle proteins. Prophenoloxidase activity was affected by all FB1 concentrations tested. Both, total haemocyte count and phenoloxidase activity decreased by the 18th day in shrimp exposed to FB1. Marked histological changes in the hepatopancreas of shrimp fed on diet containing FB1, at the all FB1 levels tested, as well as a necrotic tissue were observed. Changes in both, electrophoretic patterns and thermodynamic properties of myosin extracted from shrimp exposed to FB1 were also observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2008.02.028DOI Listing

Publication Analysis

Top Keywords

muscle proteins
12
fb1 levels
12
fb1
9
fumonisin immune
8
immune system
8
system histopathology
8
litopenaeus vannamei
8
trial 075
8
075 10μg/g
8
10μg/g fb1
8

Similar Publications

Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention.

View Article and Find Full Text PDF

The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.

View Article and Find Full Text PDF

Background: Despite surgical and intravesical chemotherapy interventions, non-muscle invasive bladder cancer (NMIBC) poses a high risk of recurrence, which significantly impacts patient survival. Traditional clinical characteristics alone are inadequate for accurately assessing the risk of NMIBC recurrence, necessitating the development of novel predictive tools.

Methods: We analyzed microarray data of NMIBC samples obtained from the ArrayExpress and GEO databases.

View Article and Find Full Text PDF

Tissue fibrosis is a progressive pathological process with excessive deposition of extracellular matrix proteins (ECM). Myofibroblasts, identified by alpha-smooth muscle actin (αSMA) expression, play an important role in tissue fibrosis by producing ECM. Here, we found that the Wnt antagonist Dickkopf1 (DKK1) induced gene expressions associated with inflammation and fibrosis in lung fibroblasts.

View Article and Find Full Text PDF

CCN5 suppresses injury-induced vascular restenosis by inhibiting smooth muscle cell proliferation and facilitating endothelial repair via thymosin β4 and Cd9 pathway.

Eur Heart J

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!