Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates.

Appl Environ Microbiol

NIZO food research, Ede, The Netherlands Top Institute Food and Nutrition, Wageningen, The Netherlands Host Microbe Interactomics, Wageningen University, Wageningen, The Netherlands

Published: September 2015

The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551249PMC
http://dx.doi.org/10.1128/AEM.00944-15DOI Listing

Publication Analysis

Top Keywords

growth rates
16
near-zero growth
12
gene expression
8
industrially relevant
8
relevant microorganisms
8
microbial growth
8
retentostat cultures
8
growth
7
physiological transcriptional
4
transcriptional responses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!