Polymerase incorporation of a 2'-deoxynucleoside-5'-triphosphate bearing a 4-hydroxy-2-mercaptobenzimidazole nucleobase analogue.

Bioorg Med Chem Lett

National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:

Published: August 2015

AI Article Synopsis

  • Researchers developed a new larger base pair involving adenine (A) and a nucleobase analogue called 4-hydroxy-2-mercaptobenzimidazole (SB).
  • The study focused on the incorporation of a 2'-deoxynucleoside-5'-triphosphate with the SB analogue (dSBTP) into DNA sequences using different DNA polymerases.
  • The successful integration of dSBTP opposite dA in DNA templates opens new opportunities for creating non-natural base pairs in biotechnology.

Article Abstract

Here, we describe the enzymatic construction of a new larger base pair formed between adenine (A) and a 4-hydroxy-2-mercaptobenzimidazole (SB) nucleobase analogue. We investigated the enzymatic incorporation of 2'-deoxynucleoside-5'-triphosphate bearing a SB nucleobase analogue (dSBTP) into oligonucleotides (ONs) by DNA polymerases. dSBTP could be effectively incorporated at the site opposite a dA in a DNA template by several B family DNA polymerases. These findings provide new insights into various aspects of biotechnology, including the design of non-natural base pairs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2015.05.075DOI Listing

Publication Analysis

Top Keywords

nucleobase analogue
12
incorporation 2'-deoxynucleoside-5'-triphosphate
8
2'-deoxynucleoside-5'-triphosphate bearing
8
4-hydroxy-2-mercaptobenzimidazole nucleobase
8
dna polymerases
8
polymerase incorporation
4
bearing 4-hydroxy-2-mercaptobenzimidazole
4
analogue describe
4
describe enzymatic
4
enzymatic construction
4

Similar Publications

In this study, we explored the chemical modification of toll-like receptor 9 (TLR9) agonist DNA using a highly fluorescent thymine analogue, ThexT, focusing on its structural and photophysical characteristics. ThexT-labelled CpG oligonucleotides effectively demonstrated intracellular localisation within macrophage cell lines. Notably, immunostimulatory activity varied depending on the site of ThexT incorporation within the TLR9 agonist sequence.

View Article and Find Full Text PDF

Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn ions.

View Article and Find Full Text PDF

DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!