Comparative pharmacokinetic and tissue distribution profiles of four major bioactive components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

J Pharm Biomed Anal

Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 Zhangheng Road, Shanghai 201203, China. Electronic address:

Published: October 2015

AI Article Synopsis

  • Fuzheng Huayu (FZHY) is a Chinese herbal treatment for liver fibrosis, which has been approved but not fully studied in terms of its pharmacokinetics and tissue distribution.
  • The study involved administering FZHY to both normal and liver fibrotic rats, using advanced UHPLC-MS/MS techniques to analyze the absorption and distribution of key active ingredients.
  • Results showed that liver fibrotic rats had significantly increased bioavailability of certain compounds, with notable differences in how these compounds distributed in tissues, particularly lower levels in the liver compared to normal rats, highlighting the need for tailored clinical dosing.

Article Abstract

Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2015.05.014DOI Listing

Publication Analysis

Top Keywords

tissue distribution
20
distribution profiles
12
hepatic fibrosis
12
pharmacokinetics tissue
12
normal rats
12
sab amy
12
profiles major
8
major bioactive
8
bioactive components
8
rats
8

Similar Publications

An exchangeable SIM probe for monitoring organellar dynamics of necrosis cells and intracellular water heterogeneity in kidney repair.

Proc Natl Acad Sci U S A

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.

Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.

View Article and Find Full Text PDF

Spatial distributions of morphogens provide positional information in developing systems, but how the distributions are established and maintained remains an open problem. Transport by diffusion has been the traditional mechanism, but recent experimental work has shown that cells can also communicate by filopodia-like structures called cytonemes that make direct cell-to-cell contacts. Here we investigate the roles each may play individually in a complex tissue and how they can jointly establish a reliable spatial distribution of a morphogen.

View Article and Find Full Text PDF

Spatially dependent tissue distribution of thyroid hormones by plasma thyroid hormone binding proteins.

Pflugers Arch

January 2025

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.

Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings.

View Article and Find Full Text PDF

Background: Applying single-cell RNA sequencing (scRNA-seq) to the study of neurodegenerative disease has propelled the field towards a more refined cellular understanding of Alzheimer's disease (AD); however, directly linking protein pathology to transcriptomic changes has not been possible at scale. Recently, a high-throughput method was developed to generate high-quality scRNA-seq data while retaining cytoplasmic proteins. Tau is a cytoplasmic protein and when hyperphosphorylated is integrally involved in AD progression.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is recognized as one major, potentially modifiable risk factor for neurodegenerative disease (NDD). Autopsy studies describe a range of neuropathologies in a proportion of individuals surviving late after TBI, most frequently the tau associated pathology, chronic traumatic encephalopathy neuropathologic change (CTE-NC). In addition to tau, other NDD pathologies are described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!