Growth hormone therapy and risk of recurrence/progression in intracranial tumors: a meta-analysis.

Neurol Sci

Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China.

Published: October 2015

Growth hormone deficiency is common in intracranial tumors, which is usually treated with surgery and radiotherapy. A number of previous studies have investigated the relationship between the growth hormone replacement therapy (GHRT) and risk of tumor recurrence/progression; however, the evidence remains controversial. We conducted a meta-analysis of published studies to estimate the potential relation between GHRT and intracranial tumors recurrence/progression. Three comprehensive databases, PUBMED, EMBASE, and Cochrane Library, were researched with no limitations, covering all published studies till the end of July, 2014. Reference lists from identified studies were also screened for additional database. The summary relative risks (RR) and 95% confidence intervals (CI) were calculated by fixed-effects models for estimation. Fifteen eligible studies, involving more than 2232 cases and 3606 controls, were included in our meta-analysis. The results indicated that intracranial tumors recurrence/progression was not associated with GHRT (RR 0.48, 95% CI 0.39-0.56), and for children, the pooled RR was 0.44 and 95% CI was 0.34-0.54. In subgroup analysis, risks of recurrence/progression were decreased for craniopharyngioma, medulloblastoma, astrocytoma, glioma, but not for pituitary adenomas, and non-functioning pituitary adenoma (NFPA), ependymoma. Results from our analysis indicate that GHRT decreases the risk of recurrence/progression in children with intracranial tumors, craniopharyngioma, medulloblastoma, astrocytoma, or glioma. However, GHRT for pituitary adenomas, NFPA, and ependymoma was not associated with the recurrence/progression of the tumors. GH replacement seems safe from the aspect of risk of tumor progression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10072-015-2269-zDOI Listing

Publication Analysis

Top Keywords

intracranial tumors
20
growth hormone
12
risk recurrence/progression
8
risk tumor
8
published studies
8
tumors recurrence/progression
8
craniopharyngioma medulloblastoma
8
medulloblastoma astrocytoma
8
astrocytoma glioma
8
pituitary adenomas
8

Similar Publications

Low-grade glioma (LGG) is a primary, slow-growing brain tumor; however, its treatment and prognosis remain challenging. In this study, we analyzed cancer data from the TCGA database, focusing particularly on the expression of the CDKN3 gene in LGG. The results showed that high CDKN3 expression in LGG patients was significantly associated with poor survival outcomes.

View Article and Find Full Text PDF

Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition.

Neuron

January 2025

Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Gliomas are aggressive neoplasms that diffusely infiltrate the brain and cause neurological symptoms, including cognitive deficits and seizures. Increased mTOR signaling has been implicated in glioma-induced neuronal hyperexcitability, but the molecular and functional consequences have not been identified. Here, we show three types of changes in tumor-associated neurons: (1) downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development and upregulation of cytoskeletal transcripts via neuron-specific profiling of ribosome-bound mRNA, (2) marked decreases in dendritic spine density via light and electron microscopy, and (3) progressive functional alterations leading to neuronal hyperexcitability via in vivo calcium imaging.

View Article and Find Full Text PDF

CDK5: Insights into its roles in diseases.

Mol Biol Rep

January 2025

Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China.

Cyclin-dependent kinase 5 (CDK5), a unique member of the CDK family, is a proline-directed serine/threonine protein kinase with critical roles in various physiological and pathological processes. Widely expressed in the central nervous system, CDK5 is strongly implicated in neurological diseases. Beyond its neurological roles, CDK5 is involved in metabolic disorders, psychiatric conditions, and tumor progression, contributing to processes such as proliferation, migration, immune evasion, genomic stability, and angiogenesis.

View Article and Find Full Text PDF

Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.

View Article and Find Full Text PDF

Background: Patients with a brain tumor experience high levels of anxiety because of the fear of remaining functional and neuropsychological sequelae. This situation affects the postoperative quality of recovery. This study was conducted to determine the effect of surgical fear and sleep quality on the postoperative quality of recovery and pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!