LRP receptor family member associated bone disease.

Rev Endocr Metab Disord

Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO, 64108, USA,

Published: June 2015

A dozen years ago the identification of causal mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene involved in two rare bone disorders propelled research in the bone field in totally new directions. Since then, there have been an explosion in the number of reports that highlight the role of the Wnt/β-catenin pathway in the regulation of bone homeostasis. In this review we discuss some of the most recent reports (in the past 2 years) highlighting the involvement of the members of the LRP family (LRP5, LRP6, LRP4, and more recently LRP8) in the maintenance of bone and their implications in bone diseases. These reports include records of new single nucleotides polymorphisms (SNPs) and haplotypes that suggest variants in these genes can contribute to subtle variation in bone traits to mutations that give rise to extreme bone phenotypes. All of these serve to further support and reinforce the importance of this tightly regulated pathway in bone. Furthermore, we discuss provocative reports suggesting novel approaches through inhibitors of this pathway to treat rarer diseases such as Osteoporosis-Pseudoglioma Syndrome (OPPG), Osteogenesis Imperfecta (OI), and Sclerosteosis/Van Buchem disease. It is hoped that by understanding the role of each component of the pathway and their involvement in bone diseases that this knowledge will allow us to develop new, more effective therapeutic approaches for more common diseases such as post-menopausal osteoporosis, osteoarthritis, and rheumatoid arthritis as well as these rarer bone diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553092PMC
http://dx.doi.org/10.1007/s11154-015-9315-2DOI Listing

Publication Analysis

Top Keywords

bone diseases
12
bone
11
diseases
5
lrp receptor
4
receptor family
4
family member
4
member associated
4
associated bone
4
bone disease
4
disease dozen
4

Similar Publications

The humeral head is the second most common anatomical site of osteonecrosis after the femoral head. Studies have reported satisfactory clinical outcomes after shoulder arthroplasty to treat osteonecrosis of the humeral head (ONHH). However, there are concerns regarding implant longevity in relatively young patients.

View Article and Find Full Text PDF

To investigate the population distribution characteristics of elderly osteoporosis fracture patients in Hebei Province and analyze the effects of air pollutants on elderly osteoporosis fractures, We retrospectively collected 18,933 cases of elderly osteoporosis fractures from January 1, 2019, to December 31, 2022, from four hospitals in Hebei Province. The average age was 76.44 ± 7.

View Article and Find Full Text PDF

Limited whole genome sequencing (WGS) studies in Asian populations result in a lack of representative reference panels, thus hindering the discovery of ancestry-specific variants. Here, we present the South and East Asian reference Database (SEAD) panel ( https://imputationserver.westlake.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

METTL14 Mediates m6A methylation to improve osteogenesis under oxidative stress condition.

Redox Rep

December 2025

Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.

Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!