Optical Coherence Tomography (OCT) is a noninvasive imaging method, which provides an in vivo image of the retina. It allows for quantitative measurements of retinal and macular thickness, including single-layer analysis. Because the retinal nerve fibre layer comprises the first axons of the visual pathway and is unmyelinated, it can be considered a unique anatomical model, which may provide insight into the pathophysiological processes of diseases with a neurodegenerative character. In fact, past OCT studies have emphasized the role of the visual pathway as an ideal structure for exploring neurodegeneration and have demonstrated the potential of the method as an instrument for longitudinally monitoring structural changes in neurological disorders such as multiple sclerosis. Progress in signal processing and advancements to the OCT technique enables the illustration of structural changes in the retinal layers in a quick, reproducible, and objective manner with a spatial resolution comparable to those of histological slices.Findings from computer-based magnetic resonance imaging analyses and neuropathological studies support the hypothesis of a degenerative component of certain psychiatric disorders such as schizophrenia. Studies in schizophrenia incorporating OCT are currently rare and have yielded further heterogeneous results. This article elucidates the method of OCT and the retina's role as a "window to the brain". Furthermore, in delineating the degenerative components of schizophrenia, we discuss the possible applications of OCT in the schizophrenia population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681543PMC
http://dx.doi.org/10.1093/schbul/sbv073DOI Listing

Publication Analysis

Top Keywords

optical coherence
8
coherence tomography
8
tomography oct
8
oct schizophrenia
8
visual pathway
8
structural changes
8
oct
7
schizophrenia
5
imaging
4
imaging brain
4

Similar Publications

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

Implantable drug delivery systems are crucial for achieving sustained delivery of active compounds to specific sites or systemic circulation. In this study, a novel reservoir-type implant combining a biodegradable rate-controlling membrane with a drug-containing core prepared using direct compression techniques is developed. The membrane is composed of poly(caprolactone) (PCL), and risperidone (RIS) served as the model drug.

View Article and Find Full Text PDF

Introduction: We explored associations between measurements of the ocular choroid microvasculature and Alzheimer's disease (AD) risk.

Methods: We measured the choroidal vasculature appearing in optical coherence tomography (OCT) scans of 69 healthy, mid-life individuals in the PREVENT Dementia cohort. The cohort was prospectively split into low-, medium-, and high-risk groups based on the presence of known risk factors (apolipoprotein E [] ε4 genotype and family history of dementia [FH]).

View Article and Find Full Text PDF

Purpose: To investigate the repeatability of optical coherence tomography angiography (OCTA) parameters in participants with different severities of glaucoma.

Methods: Subjects with open-angle glaucoma were enrolled prospectively and categorised into mild (mean deviation [MD] of 24-2 visual field test ≥ -6 dB), moderate to advanced (-6 > MD ≥ -20 dB) and severe glaucoma groups (MD < -20 dB). OCTA was performed three times within a single visit to obtain superficial and deep macular vessel density (VD) and peripapillary vessel and capillary density.

View Article and Find Full Text PDF

Achieving High-Precision Attenuation Coefficient Measurement in Optical Coherence Tomography.

J Biophotonics

January 2025

Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.

In this study, we aim to validate the analytical Cramer-Rao lower bound (CRLB) equation for determining attenuation coefficients using a 1310 nm Optical Coherence Tomography (OCT) system. Our experimental results successfully confirm the validity of the equation, achieving unprecedented precision with a standard deviation below 0.01 mm for intralipid samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!