The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.05.084DOI Listing

Publication Analysis

Top Keywords

sorption behaviour
12
polycyclic aromatic
8
aromatic hydrocarbons
8
toxicity sorption
8
behaviour biochars
8
biochars prepared
8
prepared pyrolysis
8
pyrolysis paper
8
paper mill
8
mill effluent
8

Similar Publications

Zeolite-like algal biochar nanoparticles for enhanced antibiotics removal: Sorption mechanisms and theoretical calculations.

Colloids Surf B Biointerfaces

December 2024

National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.

In the study, Sargassum horneri (S. horneri) was used to create a novel zeolite-like algal biochar (KSBC). KSBC with doping of N, O, S, Al, and Si, displayed zeolite-like properties, including well-developed porosity, a high specific surface area (1137.

View Article and Find Full Text PDF

This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m/g).

View Article and Find Full Text PDF

Effect of Moisture Sorption and Lactose Type on Tablet Quality: A Hygroscopicity Study between Lactose Powder and Tablets.

Mol Pharm

December 2024

Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China.

Lactose is one of the most commonly used tablet diluents and fillers. However, the moisture sorption of lactose powder could exert detrimental effects on the excipient itself, as well as on the tablet quality. The effects of storage relative humidity (RH) conditions for different grades of lactose powders and tablets on compression behavior and tablet qualities were investigated.

View Article and Find Full Text PDF

[Sorption and Transport of Antibiotics in Manured Upland Agricultural Soils].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Sorption and transport are important environmental behaviors of antibiotics in soils and can determine the fate of antibiotics in environments; however, limited relevant studies have been conducted on long-term manured soils. In this study, batch and repacked soil column experiments were conducted to examine the sorption and transport behavior of four veterinary antibiotics, including sulfamethazine (SMT), florfenicol (FFC), doxycycline (DOX), and enrofloxacin (ENR), in red soils, yellow soils, and calcareous soils with long-term amendment of chicken or pig manure collected in Zhejiang Province. The results showed that the sorption isothermal data of the four target antibiotics all conformed well to the linear and Freundlich models.

View Article and Find Full Text PDF

Disinfection by-products (DBPs), formed from biofilm extracellular polymeric substances (EPS) and organic matter during regular disinfection practices in drinking water distribution systems, poses a potential threat to drinking water safety. However, the diverse DBP formations induced by the intertwined algal organic matter (AOM) and bacterial EPS remains elusive. In this study, we show substantial variations in EPS and DBP formation patterns driven by AOM biosorption with divalent ions (Ca and Mg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!