Background: T-cell receptor (TCR) clonality assessment is a principal diagnostic test in the management of mycosis fungoides (MF). However, current polymerase chain reaction-based methods may produce ambiguous results, often because of low abundance of clonal T lymphocytes, resulting in weak clonal peaks that cannot be size-resolved by contemporary capillary electrophoresis (CE).

Objective: We sought to determine if next-generation sequencing (NGS)-based detection has increased sensitivity for T-cell clonality over CE-based detection in MF.

Methods: Clonality was determined by an NGS-based method in which the TCR-γ variable region was polymerase chain reaction amplified and the products sequenced to establish the identity of rearranged variable and joining regions.

Results: Of the 35 MF cases tested, 29 (85%) showed a clonal T-cell rearrangement by NGS, compared with 15 (44%) by standard CE detection. Three patients with MF had follow-up testing that showed identical, clonal TCR sequences in subsequent skin biopsy specimens.

Limitations: Clonal T-cell populations have been described in benign conditions; evidence of clonality alone, by any method, is not sufficient for diagnosis.

Conclusion: TCR clonality assessment by NGS has superior sensitivity compared with CE-based detection. Further, NGS enables tracking of specific clones across multiple time points for more accurate identification of recurrent MF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaad.2015.04.030DOI Listing

Publication Analysis

Top Keywords

clonality assessment
12
t-cell clonality
8
next-generation sequencing
8
mycosis fungoides
8
tcr clonality
8
polymerase chain
8
ce-based detection
8
clonal t-cell
8
t-cell
5
detection
5

Similar Publications

Variation in cancer risk between organs can not be explained by the degree of somatic clonal expansion.

Adv Biotechnol (Singap)

May 2024

State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China.

Somatic clonal expansion refers to the proliferation and expansion of a cell clone within a multicellular organism. Since cancer also results from the uncontrolled proliferation of few cell clones, it is generally believed that aging-associated somatic clonal expansion observed in normal tissues represents a precancerous condition. For instance, hematological malignancy is often preceded by clonal hematopoiesis.

View Article and Find Full Text PDF

Redox biomarker levels in patients with myelodysplastic syndrome.

Biomed Rep

March 2025

Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, Larissa 41500, Greece.

Myelodysplastic syndrome (MDS) is a heterogeneous clonal disorder characterized by insufficient hematopoiesis, peripheral blood cytopenia and an increased risk for malignant transformation to acute myeloid leukemia. Several factors, such as age, sex and lifestyle, promote the development of MDS syndrome. Oxidative stress, along with its detrimental effects, cause hematological disorders; however, its role in the pathogenesis of MDS is unknown.

View Article and Find Full Text PDF

TPepRet: a deep learning model for characterizing T cell receptors-antigen binding patterns.

Bioinformatics

January 2025

School of Computer Science and engineering, Central South University, Changsha, 410083, China.

Motivation: T-cell receptors (TCRs) elicit and mediate the adaptive immune response by recognizing antigenic peptides, a process pivotal for cancer immunotherapy, vaccine design, and autoimmune disease management. Understanding the intricate binding patterns between TCRs and peptides is critical for advancing these clinical applications. While several computational tools have been developed, they neglect the directional semantics inherent in sequence data, which are essential for accurately characterizing TCR-peptide interactions.

View Article and Find Full Text PDF

Aplastic anemia (AA) is a life-threatening bone marrow failure syndrome. The advent of next-generation sequencing (NGS) has shed light on the link between somatic mutations (SM) and the efficacy of immunosuppressive therapy (IST) in AA patients. However, the relationship between SM and hematopoietic stem cell transplantation (HSCT) has not been extensively explored.

View Article and Find Full Text PDF

Machine learning reveals the dynamic importance of accessory sequences for outbreak clustering.

mBio

January 2025

Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.

Unlabelled: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!