The novel whole-cell biocatalyst Candida antarctica lipase B displaying-Pichia pastoris (Pp-CALB) is characterized by its low preparation cost and could be an alternative to the commercial immobilized Candida antarctica lipase B (CALB). This study addresses the feasibility of using Pp-CALB in large scale glucose fatty acid esters production. 1,2-O-Isopropylidene-α-D-glucofuranose (IpGlc) was used as the acyl acceptor to overcome the low solubility of glucose in an organic solvent and to avoid the addition of toxic co-solvents. IpGlc significantly improved the Pp-CALB catalyzing esterification efficiency when using long chain fatty acids as the acyl donor. Under the preferred operating conditions (50 °C, 40 g/L molecular sieve dosage and 200 rpm mixing intensity), 60.5% of IpGlc converted to 6-O-myristate-1, 2-O-isopropylidene-α-D-glucofuranose (C14-IpGlc) after a 96-h reaction in a 2-L stirred reactor. In a 5-L pilot scale test, Pp-CALB also showed a similar substrate conversion rate of 55.4% and excellent operational stability. After C14-IpGlc was collected, 70% trifluoroacetic acid was adopted to hydrolyze C14-IpGlc to myristate glucose ester (C14-Glc) with a high yield of 95.3%. In conclusion, Pp-CALB is a powerful biocatalyst available for industrial synthesis, and this study describes an applicable and economical process for the large scale production of myristate glucose ester.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2015.04.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!