Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ustilago maydis, a dimorphic fungus causing corn smut disease, serves as an excellent model to study different aspects of cell development. This study shows the influence of chitosan, oligochitosan and glycol chitosan on cell growth and physiology of U. maydis. These biological macromolecules affected the cell growth of U. maydis. In particular, it was found that chitosan completely inhibited U. maydis growth at 1mg/mL concentration. Microscopic studies revealed swellings on the surface of the cells treated with the polymers, and chitosan caused complete destruction of the membrane and formation of vesicles on the periphery of the cell. Oligochitosan and chitosan caused changes in oxygen consumption, K(+) efflux and H(+)-ATPase activity. Oligochitosan induced a faster consumption of oxygen in the cells, while glycol chitosan provoked slower oxygen consumption. It is noteworthy that chitosan completely inhibited the fungal respiratory activity. The strongest effects were exhibited by chitosan in all evaluated aspects. These findings showed high sensitivity of U. maydis to chitosan and provided evidence for antifungal effects of chitosan derivatives. To our knowledge, this is a first report showing that chitosan and its derivatives affect the cell morphology and physiological processes in U. maydis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2015.05.057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!