Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Celiac disease (CD) is an immune-mediated enteropathy sustained by dietary gluten in susceptible individuals, and characterized by a complex interplay between adaptive and innate responses against gluten peptides (PTG). In a recent contribution we have demonstrated that the treatment with PTG induces the expression and activity of arginase in both murine macrophages and human monocytes from healthy subjects, thus suggesting a role for arginine and its metabolites in gluten-triggered response of these cells. Here we further explore this field, by addressing the effects of PTG on polyamine synthesis and release in murine RAW264.7 macrophages, and how they affect epithelial permeability of Caco-2 monolayers. Results obtained show a massive production and release of putrescine by macrophages upon incubation with gluten peptides; this, in turn, causes a decrease in TEER in epithelial cells, indicating that PTG-driven secretion of polyamines by macrophages has a role in the modulation of intestinal permeability in vitro. At a molecular level, putrescine production appears referable to the activation of C/EBPβ transcription factor, which is known to be responsible for arginase induction in activated macrophages and is a crucial mediator of inflammation. Whether these pathways are stimulated also in vivo deserves to be further investigated, as well as their role in gluten-driven cellular and intestinal defects typical of CD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2015.06.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!