Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525120 | PMC |
http://dx.doi.org/10.1152/ajplung.00390.2014 | DOI Listing |
J Tissue Eng
January 2025
Core Facility Tissue Engineering, Institute of Chemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Advanced in vitro models are crucial for studying human airway biology. Our objective was the development and optimization of 3D in vitro models representing diverse airway regions, including deep lung alveolar region. This initiative was aimed at assessing the influence of selective scaffold materials on distinct airway co-culture models.
View Article and Find Full Text PDFPulmonology
December 2025
Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.
Age-related lung function decline is associated with small airway closure and gas trapping. The mechanisms which cause these changes are not fully understood. It has been suggested that COPD is caused by accelerated ageing.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
Purpose: Allergic diseases have escalated to epidemic levels worldwide, impacting nearly 30% of the global population. Fungi are a significant source of allergens responsible for up to 6% of respiratory diseases in the general population. However, the specific cause of respiratory allergies often remains unidentified.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China. Electronic address:
Asthma is a heterogeneous disease characterized by chronic airway inflammation and hyperresponsiveness. A number of immune cells are involved in asthma pathogenesis, such as eosinophils, mast cells, T lymphocytes and neutrophils, as well as airway epithelial cells. Glycolysis plays a crucial role in glucose metabolism, and serves as a bridge between metabolic and inflammatory dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!