Studies employing brain lesion or intracerebral drug infusions in rats have demonstrated a double dissociation between the roles of the hippocampus and dorsolateral striatum in place and response learning. The hippocampus mediates a rapid cognitive learning process underlying place learning, whereas the dorsolateral striatum mediates a relatively slower learning process in which stimulus-response habits underlying response learning are acquired in an incremental fashion. One potential implication of these findings is that hippocampus-dependent learning may benefit from a relative massing of training trials, whereas dorsal striatum-dependent learning may benefit from a relative distribution of training trials. In order to examine this hypothesis, the present study compared the effects of massed (30s inter-trial interval; ITI) or spaced (30min ITI) training on acquisition of a hippocampus-dependent place learning task, and a dorsolateral striatum-dependent response task in a plus-maze. In the place task rats swam from varying start points (N or S) to a hidden escape platform located in a consistent spatial location (W). In the response task rats swam from varying start points (N or S) to a hidden escape platform located in the maze arm consistent with a body-turn response (left). In the place task, rats trained with the massed trial schedule acquired the task quicker than rats trained with the spaced trial schedule. In the response task, rats trained with the spaced trial schedule acquired the task quicker than rats trained with the massed trial schedule. The double dissociation observed suggests that the reinforcement parameters most conducive to effective learning in hippocampus-dependent and dorsolateral striatum-dependent learning may have differential temporal characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.beproc.2015.06.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!