Inhibition of brain retinoic acid catabolism: a mechanism for minocycline's pleiotropic actions?

World J Biol Psychiatry

a Department of Psychiatry , Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany.

Published: December 2016

Objectives: Minocycline is a tetracycline antibiotic increasingly recognized in psychiatry for its pleiotropic anti-inflammatory and neuroprotective potential. While underlying mechanisms are still incompletely understood, several lines of evidence suggest a relevant functional overlap with retinoic acid (RA), a highly potent small molecule exhibiting a great variety of anti-inflammatory and neuroprotective properties in the adult central nervous system (CNS). RA homeostasis in the adult CNS is tightly controlled through local RA synthesis and cytochrome P450 (CYP450)-mediated inactivation of RA. Here, we hypothesized that minocycline may directly affect RA homeostasis in the CNS via altering local RA degradation.

Methods: We used in vitro RA metabolism assays with metabolically competent synaptosomal preparations from murine brain and human SH-SY5Y neuronal cells as well as viable human SH-SY5Y neuroblastoma cell cultures.

Results: We revealed that minocycline potently blocks RA degradation as measured by reversed-phase high-performance liquid chromatography and in a viable RA reporter cell line, even at low micromolar levels of minocycline.

Conclusions: Our findings provide evidence for enhanced RA signalling to be involved in minocycline's pleiotropic mode of action in the CNS. This novel mode of action of minocycline may help in developing more specific and effective strategies in the treatment of neuroinflammatory or neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.3109/15622975.2015.1036116DOI Listing

Publication Analysis

Top Keywords

retinoic acid
8
minocycline's pleiotropic
8
anti-inflammatory neuroprotective
8
human sh-sy5y
8
mode action
8
inhibition brain
4
brain retinoic
4
acid catabolism
4
catabolism mechanism
4
mechanism minocycline's
4

Similar Publications

Role of FOXO3a in LPS-induced inflammatory conditions in human dental pulp cells.

J Oral Biosci

January 2025

Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea. Electronic address:

Objectives: We investigated the involvement of FOXO3a in lipopolysaccharide (LPS)-induced inflammation in primary human dental pulp cells (HDPCs).

Methods: HDPCs that were isolated from donors undergoing tooth extraction for orthodontic purposes were cultured with or without 1 μg/mL LPS at various intervals. The FOXO3a localization in the HDPCs was verified using immunofluorescence.

View Article and Find Full Text PDF

Influence of macrophages and neutrophilic granulocyte-like cells on crystalline silica-induced toxicity in human lung epithelial cells.

Toxicol Res (Camb)

February 2025

Département Toxicologie et Biométrologie, Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), 1 rue du Morvan, 54519 Vandœuvre-lès-Nancy, France.

In many industrial activities, workers may be exposed by inhalation to particles that are aerosolized, To predict the human health hazard of these materials, we propose to develop a co-culture model (macrophages, granulocytes, and alveolar epithelial cells) designed to be more representative of the inflammatory pulmonary response occurring in vivo. Phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were used as macrophages, All-trans retinoic acid (ATRA)-differentiated HL60 were used as granulocytes and A549 were used as epithelial alveolar type II cells. A crystalline silica sample DQ12 was used as a prototypical particle for its capabilities to induce DNA damage, inflammatory response, and oxidative stress in epithelial cells; its polyvinylpyridine-N-oxide (PVNO)-surface modified counterpart was also used as a negative particulate control.

View Article and Find Full Text PDF

Vitamin D-VDR and vitamin A-RAR affect IL-13 and IFNγ secretion from human CD4 T cells directly and indirectly via competition for their shared co-receptor RXR.

Scand J Immunol

January 2025

LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D (1,25(OH)D) and 9-cis retinoic acid (9cRA) on T helper (T)1 and T2 cytokines and transcription factors in primary human blood-derived CD4 T cells.

View Article and Find Full Text PDF

Reversal of Mucin 1 Reduction-Induced Enterocyte Apoptosis by Retinoic Acid through the PI3K/AKT Signaling Pathway in an In vitro Model of Necrotizing Enterocolitis.

Curr Mol Med

January 2025

Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.

Objective: This study aimed to investigate the roles of Mucin 1 (MUC1), the PI3K/AKT pathway, and enterocyte apoptosis in Necrotizing Enterocolitis (NEC).

Methods: Using an NEC Caco-2 cell model, retinoic acid treatment and MUC1 gene silencing were employed. Flow cytometry was used to assess apoptosis, while quantitative PCR and western blot analyses were conducted to evaluate the gene and protein expressions of MUC1, PI3K, Akt, and factors related to apoptotic modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!