Hyperhomocysteinemia (HHcy) is an independent risk factor of atherosclerosis and other cardiovascular diseases. Unfortunately, Hcy-lowering strategies were found to have limited effects in reducing cardiovascular events. The underlying mechanisms remain unclear. Increasing evidence reveals a role of inflammation in the pathogenesis of HHcy. Homocysteine (Hcy) is a precursor of hydrogen sulfide (H2S), which is formed via the transsulfuration pathway catalyzed by cystathionine β-synthase and cystathionine γ-lyase (CSE) and serves as a novel modulator of inflammation. In the present study, we showed that methionine supplementation induced mild HHcy in mice, associated with the elevations of TNF-α and IL-1β in the plasma and reductions of plasma H2S level and CSE expression in the peritoneal macrophages. H2S-releasing compound GYY4137 attenuated the increases of TNF-α and IL-1β in the plasma of HHcy mice and Hcy-treated raw264.7 cells while CSE inhibitor PAG exacerbated it. Moreover, the in vitro study showed that Hcy inhibited CSE expression and H2S production in macrophages, accompanied by the increases of DNA methyltransferase (DNMT) expression and DNA hypermethylation in cse promoter region. DNMT inhibition or knockdown reversed the decrease of CSE transcription induced by Hcy in macrophages. In sum, our findings demonstrate that Hcy may trigger inflammation through inhibiting CSE-H2S signaling, associated with increased promoter DNA methylation and transcriptional repression of cse in macrophages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490461 | PMC |
http://dx.doi.org/10.3390/ijms160612560 | DOI Listing |
Sci Rep
October 2024
School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China.
Tamoxifen (TAM) resistance is a major challenge in treating oestrogen receptor-positive (ER+) breast cancers. It is possible that the HS synthase cystathionine-γ-lyase (CSE), which has been previously shown to promote tumour growth and metastasis in other cancer cells, is involved in this resistance. Therefore, we investigated CSE's role and potential mechanisms in TAM-resistant breast cancer cells.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
February 2022
Department of Pathophysiology, Harbin Medical University, 150081 Harbin, Heilongjiang, China.
Background: Endothelial dysfunction plays a crucial role in diabetic vascular complications. A decrease in hydrogen sulfide (H2S) levels is increasingly becoming a vital factor contributing to high glucose (HG)-induced endothelial dysfunction. Dopamine D1-like receptors (DR1) activation has important physiological functions in the cardiovascular system.
View Article and Find Full Text PDFExp Cell Res
January 2021
Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China. Electronic address:
Ischemia-reperfusion (I/R) injury is a multifactorial process triggered when an organ is subjected to transiently reduced blood supply. The result is a cascade of pathological complications and organ damage due to the production of reactive oxygen species following reperfusion. The present study aims to evaluate the role of activated calcium-sensing receptor (CaR)-cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway in I/R injury.
View Article and Find Full Text PDFJ Cell Mol Med
September 2020
Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.
Methionine restrictive diet may alleviate ischaemia/reperfusion (I/R)-induced myocardial injury, but its underlying mechanism remains unclear. HE staining was performed to evaluate the myocardial injury caused by I/R and the effect of methionine-restricted diet (MRD) in I/R mice. IHC and Western blot were carried out to analyse the expression of CSE, CHOP and active caspase3 in I/R mice and hypoxia/reoxygenation (H/R) cells.
View Article and Find Full Text PDFObjective: Trimetazidine is a piperazine-derived metabolic agent. It exerts cardioprotective effects against myocardial ischemia/reperfusion (I/R) injury. In addition, studies confirm that the cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway serves a beneficent role in attenuating myocardial I/R injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!