Free-ranging nonhuman primates are frequent sources of zoonotic pathogens due to their physiologic similarity and in many tropical regions, close contact with humans. Many high-risk disease transmission interfaces have not been monitored for zoonotic pathogens due to difficulties inherent to invasive sampling of free-ranging wildlife. Non-invasive surveillance of nonhuman primates for pathogens with high potential for spillover into humans is therefore critical for understanding disease ecology of existing zoonotic pathogen burdens and identifying communities where zoonotic diseases are likely to emerge in the future. We developed a non-invasive oral sampling technique using ropes distributed to nonhuman primates to target viruses shed in the oral cavity, which through bite wounds and discarded food, could be transmitted to people. Optimization was performed by testing paired rope and oral swabs from laboratory colony rhesus macaques for rhesus cytomegalovirus (RhCMV) and simian foamy virus (SFV) and implementing the technique with free-ranging terrestrial and arboreal nonhuman primate species in Uganda and Nepal. Both ubiquitous DNA and RNA viruses, RhCMV and SFV, were detected in oral samples collected from ropes distributed to laboratory colony macaques and SFV was detected in free-ranging macaques and olive baboons. Our study describes a technique that can be used for disease surveillance in free-ranging nonhuman primates and, potentially, other wildlife species when invasive sampling techniques may not be feasible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457869PMC
http://dx.doi.org/10.1371/journal.pntd.0003813DOI Listing

Publication Analysis

Top Keywords

nonhuman primates
20
non-invasive oral
8
oral sampling
8
sampling technique
8
zoonotic pathogen
8
surveillance nonhuman
8
free-ranging nonhuman
8
zoonotic pathogens
8
invasive sampling
8
ropes distributed
8

Similar Publications

Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.

View Article and Find Full Text PDF

Lymphocryptoviruses (LCVs) are ubiquitous gamma-herpesviruses that establish life-long infections in both humans and non-human primates (NHPs). In immunocompromised hosts, LCV infections are commonly associated with B cell disorders and malignancies such as lymphoma. In this study, we evaluated simian LCV-encoded small microRNAs (miRNAs) present in lymphoblastoid cell lines (LCLs) derived from a Mauritian cynomolgus macaque () with cyLCV-associated post-transplant lymphoproliferative disease (PTLD) as well as the viral miRNAs expressed in a baboon () LCL that harbors CeHV12.

View Article and Find Full Text PDF

The Zika virus (ZIKV) epidemic elicited a rapid commitment to the development of animal models for ZIKV research. Non-human primates (NHPs) and mice have made significant contributions to this research, but NHPs are expensive, have a long gestation period, and are available only in small numbers; non-genetically modified mice are resistant to infection. To address these deficiencies, we have established the laboratory opossum, , as a small animal model that complements the mouse and monkey models.

View Article and Find Full Text PDF

The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.

View Article and Find Full Text PDF

Background: A goal of mucosal human immunodeficiency virus type 1 (HIV-1) vaccines is to generate mucosal plasma cells producing polymeric IgA (pIgA)-neutralizing antibodies at sites of viral entry. However, vaccine immunogens capable of eliciting IgA neutralizing antibodies (nAbs) that recognize tier 2 viral isolates have not yet been identified.

Methods: To determine if stabilized native-like HIV-1 envelope (Env) trimers could generate IgA nAbs, we purified total IgA and IgG from the banked sera of six rhesus macaques that had been found in a previous study to develop serum nAbs after subcutaneous immunization with BG505.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!