Human cytochrome b5 (Cyt b5) plays important roles in cytochrome P450 (CYP)-mediated drug metabolism. However, the expression level of Cyt b5 in normal human liver remains largely unknown. The effect of Cyt b5 on overall CYP activity in human liver microsomes (HLM) has rarely been reported and the relationship between Cyt b5 and the activity of polymorphic CYP has not been systematically investigated. In this study, we found that the median value of Cyt b5 protein was 270.01 pmol/mg from 123 HLM samples, and 12- and 19-fold individual variation was observed in Cyt b5 mRNA and protein levels, respectively. Gender and smoking clearly influenced Cyt b5 content. In addition, we found that Cyt b5 protein levels significantly correlated with the overall activity of CYP1A2, 2B6, and 2E1 in HLM. However, when the CYP activities were sorted by single nucleotide polymorphisms (SNP), the effect of Cyt b5 protein on the kinetic parameters varied greatly. There were significant correlations between Cyt b5 content and Vmax and CLint of CYP1A2 wild-types (3860GG, 2159GG, and 5347CC) as well as homozygous mutants (163AA and 3113GG). In contrast to Vmax and CLint, the Km of CYP2B6 516GG and 785AA genotypes was inversely associated with Cyt b5 content. Correlations between Cyt b5 content and Vmax and CLint of CYP2E1 -1293GG, -1293GC, 7632TT, 7632TA, -333TT, and -352AA genotypes were also observed. In conclusion, Cyt b5 expression levels varied considerably in the Chinese cohort from this study. Cyt b5 had significant impact on the overall activity of CYP1A2, 2B6, and 2E1 in HLM and the effects of Cyt b5 protein on polymorphic CYP1A2, 2B6, and 2E1 activity were SNP-dependent. These findings suggest that Cyt b5 plays an important role in CYP-mediated activities in HLM and may possibly be a contributing factor for the individual variation observed in CYP enzyme activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457846PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128547PLOS

Publication Analysis

Top Keywords

cyp1a2 2b6
16
2b6 2e1
16
cyt
16
cyt protein
16
cyt content
16
human liver
12
vmax clint
12
activity polymorphic
8
polymorphic cyp1a2
8
liver microsomes
8

Similar Publications

Correlations of Long Noncoding RNA HNF4A-AS1 Alternative Transcripts with Liver Diseases and Drug Metabolism.

Drug Metab Dispos

October 2024

Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)

Hepatocyte nuclear factor 4 alpha antisense 1 () is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury.

View Article and Find Full Text PDF

Tebuconazole (TEB), a prominent chiral triazole fungicide, has been extensively utilized for plant pathogen control globally. Despite experimental evidence of TEB metabolism in mammals, the enantioselectivity in the biotransformation of R- and S-TEB enantiomers by specific CYP450s remains elusive. In this work, integrated in silico simulations were employed to unveil the binding interactions and enantioselective metabolic fate of TEB enantiomers within human CYP1A2, 2B6, 2E1, and 3A4.

View Article and Find Full Text PDF

Specific human CYP enzymes-dependent mutagenicity of tris(2-butoxyethyl) phosphate (an organophosphorus flame retardant) in human and hamster cell lines.

Chem Biol Interact

July 2024

Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China. Electronic address:

Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied.

View Article and Find Full Text PDF

Background And Objective: Viloxazine extended-release (ER) [Qelbree] is a nonstimulant attention-deficit/hyperactivity disorder (ADHD) treatment. In vitro studies suggested potential for viloxazine to inhibit cytochrome 450 (CYP) enzymes 1A2, 2B6, 2D6 and 3A4. This clinical study therefore evaluated viloxazine ER effects on index substrates for CYP1A2, 2D6, and 3A4, and secondarily evaluated the impact of CYP2D6 polymorphisms on viloxazine pharmacokinetics.

View Article and Find Full Text PDF

Background And Objective: Abrocitinib is an oral small-molecule Janus kinase (JAK)-1 inhibitor approved for the treatment of moderate-to-severe atopic dermatitis. In vitro studies indicated that abrocitinib is a weak time-dependent inhibitor of cytochrome P450 (CYP) 2C19/3A and a weak inducer of CYP1A2/2B6/2C19/3A. To assess the potential effect of abrocitinib on concomitant medications, drug-drug interaction (DDI) studies were conducted for abrocitinib with sensitive probe substrates of these CYP enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!