The worldwide increase of hybridization in different groups is thought to have become more important with the loss of isolating barriers and the introduction of invasive species. This phenomenon could result in the extinction of endemic species. This study aims at investigating the hybridization dynamics between the endemic and threatened Lesser Antillean iguana (Iguana delicatissima) and the invasive common green iguana (Iguana iguana) in the Lesser Antilles, as well as assessing the impact of interspecific hybridization on the decline of I. delicatissima. 59 I. delicatissima (5 localities), 47 I. iguana (12 localities) and 27 hybrids (5 localities), who were all identified based on morphological characters, have been genotyped at 15 microsatellites markers. We also sequenced hybrids using ND4 mitochondrial loci to further investigate mitochondrial introgression. The genetic clustering of species and hybrid genetic assignment were performed using a comparative approach, through the implementation of a Discriminant Analysis of Principal Component (DAPC) based on statistics, as well as genetic clustering approaches based on the genetic models of several populations (Structure, NewHybrids and HIest), in order to get full characterization of hybridization patterns and introgression dynamics across the islands. The iguanas identified as hybrids in the wild, thanks to morphological analysis, were all genetically F1, F2, or backcrosses. A high proportion of individuals were also the result of a longer-term admixture. The absence of reproductive barriers between species leads to hybridization when species are in contact. Yet morphological and behavioral differences between species could explain why males I. iguana may dominate I. delicatissima, thus resulting in short-term species displacement and extinction by hybridization and recurrent introgression from I. iguana toward I. delicatissima. As a consequence, I. delicatissima gets eliminated through introgression, as observed in recent population history over several islands. These results have profound implications for species management of the endangered I. delicatissima and practical conservation recommendations are being discussed in the light of these findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457794 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127575 | PLOS |
BMJ Open Gastroenterol
January 2025
Histopathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.
Objective: Artificial intelligence (AI) tools for histological diagnosis offer great potential to healthcare, yet failure to understand their clinical context is delaying adoption. IGUANA (Interpretable Gland-Graphs using a Neural Aggregator) is an AI algorithm that can effectively classify colonic biopsies into normal versus abnormal categories, designed to automatically report normal cases. We performed a retrospective pathological and clinical review of the errors made by IGUANA.
View Article and Find Full Text PDFJ Vet Med Sci
January 2025
The Animal Disease Research and Support Association.
Two captive-bred lizards, a Western spiny-tailed iguana (Ctenosaura pectinata) and a bearded dragon (Pogona vitticeps), were evaluated for anorexia and absence of feces. The iguana had a recent cloacal prolapse, whereas the dragon had a repaired prolapse 20 days earlier. Exploratory celiotomy under anesthesia revealed a devitalized distal colon in the iguana and stenosis of ductal organs in the pelvic cavity in the dragon, leading to colostomies.
View Article and Find Full Text PDFVet Clin North Am Exot Anim Pract
January 2025
Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho Trida 1946/1, Brno CZ 612 42, Czech Republic, EU. Electronic address:
Photobiomodulation therapy, also termed as low-level laser therapy, is commonly used as an adjunctive therapy for various medical conditions in veterinary practice. The ACTIVet PRO low-level laser has been used for treatment of various nondomestic species, yet the effects of dermal attributes such as pigment, feathers, or scales have not been evaluated. The effects of low-level laser therapy with the ACTIVet PRO have been investigated in laboratory animals, including a study in rats that evaluated the passage of laser light through the skin in postmortem samples.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
January 2025
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
Digital specializations of geckos are widely associated with their climbing abilities. A recurring feature that has independently emerged within the sister families Gekkonidae and Phyllodactylidae is the presence of neomorphic paraphalanges (PPEs), usually paired, paraxial skeletal structures lying adjacent to interphalangeal and metapodial-phalangeal joints. The incorporation of PPEs into gekkotan autopodia has the potential to modify the modularity and integration of the ancestral limb pattern by affecting information flow among skeletal limb parts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!