Objectives: The nuclear protein high mobility group protein box 1 (HMGB1) is a proinflammatory mediator that belongs to the alarmin family of proinflammatory mediators, and it has recently emerged as a key player in different acute and chronic immune disorders. Several lines of evidence demonstrate that HMGB1 is actively released extracellularly from immune cells or passively released from necrotic cells. Because of the ability of HMGB1 to sustain chronic inflammation, we investigated whether the protein is present in nasal fluids of patients with different forms of rhinitis.

Methods: HMGB1 levels were evaluated in nasal fluids of healthy subjects or rhinitis patients who were treated or not treated with different treatments.

Results: We report that the level of HMGB1 was significantly increased in nasal fluids of patients with allergic rhinitis, patients with NARES (nonallergic rhinitis with eosinophiliac syndrome), as well as patients with polyps. We also found that a formulation containing the HMGB1-binding compound glycyrrhizin (GLT) reduced the HMGB1 content in nasal fluids of rhinitis patients to an extent similar to that with nasal budesonide treatment. We also found that among the cultured human leukocyte populations, eosinophils released higher amounts of HMGB1. Based on the ability of HMGB1 to sustain eosinophil survival and the ability of GLT to inactivate HMGB1, we report that GLT selectively killed cultured eosinophils and had no effect on neutrophils, macrophages, and lymphocytes.

Conclusion: Collectively, these data underscore the role of HMGB1 in rhinitis pathogenesis and the therapeutic potential of GLT formulations in treatment of chronic inflammatory disorders of the nasal mucosa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451536PMC
http://dx.doi.org/10.3342/ceo.2015.8.2.123DOI Listing

Publication Analysis

Top Keywords

nasal fluids
20
fluids patients
12
rhinitis patients
12
hmgb1
11
ability hmgb1
8
hmgb1 sustain
8
nasal
7
patients
7
rhinitis
6
fluids
5

Similar Publications

: Sinus lifting, a procedure to augment bone in the maxilla, may cause complications such as sinusitis due to impaired drainage. This study aimed to assess how sinus lifting impacts airflow in the sinus cavity, which is essential for patients undergoing dental implants. Using computational fluid dynamics (CFD), this research analyzed airflow changes after sinus floor elevation, offering insights into the aerodynamic consequences of the procedure.

View Article and Find Full Text PDF

Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.

View Article and Find Full Text PDF

Objective: To explore the genetic characteristics of a Chinese pedigree with rare mosaic 11q partial duplication and its pathogenetic mechanisms.

Methods: A pedigree which underwent prenatal diagnosis at Wenzhou Central Hospital between September 25, 2015 and November 30, 2023 was selected for the study. Clinical data were collected from the pedigree.

View Article and Find Full Text PDF

Purpose: The objective of this study was to add to the limited literature of Focal Scleral Nodule (FSN).

Methods: This study was a single-centre, retrospective, observational case series performed at Manchester Royal Eye Hospital (United Kingdom). Nineteen eyes from nineteen patients over a thirteen year period (January 2011 to January 2024) were included.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the most prominent and highly prevalent chronic neuro-degenerative disease generally recognized by classical motor symptoms which are linked with genetic mutation, Lewy bodies, and subsequently selective loss of nigrostriatal dopaminergic neurons. The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier protect the central nervous system against toxins and are the most significant barriers to effective brain drug delivery in managing Parkinsonism. In recent years, intranasal delivery has attracted remarkable attention for brain targeting as the drug can be administered to the brain directly from the nose employing the trigeminal and olfactory pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!