In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization.

Am J Transl Res

ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain ; Department of Medicine, Autonomous University of Barcelona (UAB) Barcelona, Spain.

Published: June 2015

Introduction: Selection of a biomaterial-based scaffold that mimics native myocardial extracellular matrix (ECM) architecture can facilitate functional cell attachment and differentiation. Although decellularized myocardial ECM accomplishes these premises, decellularization processes may variably distort or degrade ECM structure.

Materials And Methods: Two decellularization protocols (DP) were tested on porcine heart samples (epicardium, mid myocardium and endocardium). One protocol, DP1, was detergent-based (SDS and Triton X-100), followed by DNase I treatment. The other protocol, DP2, was focused in trypsin and acid with Triton X-100 treatments. Decellularized myocardial scaffolds were reseeded by embedding them in RAD16-I peptidic hydrogel with adipose tissue-derived progenitor cells (ATDPCs).

Results: Both protocols yielded acellular myocardial scaffolds (~82% and ~94% DNA reduction for DP1 and DP2, respectively). Ultramicroscopic assessment of scaffolds was similar for both protocols and showed filamentous ECM with preserved fiber disposition and structure. DP1 resulted in more biodegradable scaffolds (P = 0.04). Atomic force microscopy revealed no substantial ECM stiffness changes post-decellularization compared to native tissue. The Young's modulus did not differ between heart layers (P = 0.69) or decellularization protocols (P = 0.15). After one week, recellularized DP1 scaffolds contained higher cell density (236 ± 106 and 98 ± 56 cells/mm(2) for recellularized DP1 and DP2 scaffolds, respectively; P = 0.04). ATDPCs in both DP1 and DP2 scaffolds expressed the endothelial marker isolectin B4, but only in the DP1 scaffold ATDPCs expressed the cardiac markers GATA4, connexin43 and cardiac troponin T.

Conclusions: In our hands, DP1 produced myocardial scaffolds with higher cell repopulation and promotes ATDPCs expression of endothelial and cardiomyogenic markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448195PMC

Publication Analysis

Top Keywords

decellularization protocols
12
myocardial scaffolds
12
dp1 dp2
12
decellularized myocardial
8
dp1
8
triton x-100
8
scaffolds
8
scaffolds 004
8
recellularized dp1
8
higher cell
8

Similar Publications

Decellularized Green and Brown Macroalgae as Cellulose Matrices for Tissue Engineering.

J Funct Biomater

December 2024

Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.

Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness.

View Article and Find Full Text PDF

This work presents strong evidence supporting the use of decellularized human iliac arteries combined with adipose tissue-derived stem cells (hASCs) as a promising alternative for vascular tissue engineering, opening the path to future treatments for peripheral artery disease (PAD). PAD is a progressive condition with high rates of amputation and mortality due to ischemic damage and limited graft options. Traditional synthetic grafts often fail due to poor integration, while autologous grafts may be unsuitable for patients with compromised vascular health.

View Article and Find Full Text PDF

Extracellular matrix (ECM) from decellularized mammalian tissues has been used in many therapeutic applications. The tissue-specific composition of the ECM is critically associated with therapeutic performance. However, ECM translation needs to be improved because of the complex composition and limited understanding of ECM repairing mechanisms due partly to incomplete proteomic interrogation of ECM samples.

View Article and Find Full Text PDF
Article Synopsis
  • DMSC-derived extracellular vesicles (DMSC_EV) were shown to enhance DMSC proliferation and mobility on specific growth surfaces, particularly s-dAM.
  • DMSC attachment varied based on the substrate, with increased attachment observed on decellularized surfaces and Matrigel when EVs were included.
  • The study highlights that combining in vitro EVs and extracellular matrix (ECM) components can optimize the expansion and therapeutic potential of mesenchymal stem cells (MSCs) for various applications.
View Article and Find Full Text PDF

The extracellular matrix (ECM) is a non-cellular three-dimensional structure present in all tissues that is essential for the intestinal maintenance, function and structure, as well as for providing physical support for tissue integrity and elasticity. ECM enables the regulation of various processes involved in tissue homeostasis, being vital for healing, growth, migration and cell differentiation. Structurally, ECM is composed of water, polysaccharides and proteins, such as collagen fibers and proteoglycans, which are specifically arranged for each tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!