Advanced oxidation protein products (AOPPs) accelerate the progression of chronic kidney disease. We previously demonstrated that AOPPs induce hypertrophy and epithelial-to-mesenchymal transition (EMT) in human proximal tubular cells (HK-2 cells) through induction of endoplasmic reticulum (ER) stress. However, which pathway of unfolded protein response (UPR) induced by ER stress plays crucial roles in this process remains unclear. In this study, we investigated the roles of the protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways of UPR in this process in HK-2 cells. AOPP treatment induced the overexpression of cleaved ATF6 and spliced form of X-box binding protein-1, and induced the phosphorylation of PERK, eukaryotic translation initiation factor 2α and IRE1. Furthermore, silencing of ATF6 increased E-cadherin and zonula occludens-1 expression, lowered the expression of vimentin, and downregulated total protein content, whereas knockdown of PERK or IRE1 resulted in no difference compared with the scramble siRNA-transfected cells. AOPP-induced phosphorylation of Src, which was reproduced by thapsigargin, an inducer of ER stress, was partly reversed by salubrinal, an inhibitor of ER stress. Furthermore, the Src inhibitor saracatinib effectively blocked AOPP-induced phosphorylation of Src, activation of ER stress, hypertrophy, and EMT in HK-2 cells. Collectively, our results indicate that AOPPs induce the PERK, ATF6, and IRE1 pathways of UPR, and the ATF6 pathway rather than the other two pathways mediates AOPP-induced HK-2-cell hypertrophy and EMT. We also suggest that the ER stress involved in this process is likely mediated by the activation of Src kinase.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-015-2469-0DOI Listing

Publication Analysis

Top Keywords

hk-2 cells
16
atf6 pathway
8
pathway unfolded
8
unfolded protein
8
protein response
8
advanced oxidation
8
oxidation protein
8
hypertrophy epithelial-to-mesenchymal
8
epithelial-to-mesenchymal transition
8
aopps induce
8

Similar Publications

Because acute kidney injuries (AKI) are one of the critical health problems worldwide, studies on the risk factors, mechanisms, and treatment strategies seem necessary. Glycerol (GLY), known to induce cell necrosis via myoglobin accumulation in renal tubules, is widely used as an AKI model. This study aimed to evaluate the protective effects of gallic acid (GA) against GLY-induced AKI.

View Article and Find Full Text PDF

Neddylation is a process of attaching neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to substrates for the protein function modulation via enzymatic cascades involving NEDD8-activating enzyme (E1), NEDD8-conjugating enzyme (E2), and NEDD8 ligase (E3). Defective in cullin neddylation 1 (DCN1) serves as a co-E3 ligase, that can simultaneously bind E2 UBE2M and cullin proteins to stabilize the catalytic center of the Cullin-Ring E3 ligase (CRL) complex, thereby promoting cullin neddylation. Neddylation is reported to be activated in diverse human diseases, and inhibition of protein neddylation has been regarded as a promising anticancer therapy.

View Article and Find Full Text PDF

Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.

Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.

View Article and Find Full Text PDF

Urinary stones (urolithiasis) have been categorized as kidney stones (renal calculus), ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder calculus), and urethral stones (urethral calculus); however, the mechanisms underlying their promotion and related injuries in glomerular and tubular cells remain unclear. Although lifestyle-related diseases (LSRDs) such as hyperglycemia, type 2 diabetic mellitus, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, and cardiovascular disease are risk factors for urolithiasis, the underlying mechanisms remain unclear. Recently, heat shock protein 90 (HSP90) on the membrane of HK-2 human proximal tubular epithelium cells has been associated with the adhesion of urinary stones and cytotoxicity.

View Article and Find Full Text PDF

Objectives: To explore the effects of puerarin on renal ischemia/reperfusion injury and the possible mechanism.

Materials And Methods: The experimental mice were injected with puerarin (50 or 100 mg/kg) per day or equal sterile saline by intraperitoneal injection for one week, and a renal I/R injury model was constructed. HK-2 cells were incubated with puerarin (1 uM and 10 uM) before the H/R model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!