Precise genome editing by the Cas9 nuclease depends on exogenously provided templates for homologous recombination. Here, we compare oligonucleotides with short homology and circular DNA molecules with extensive homology to genomic targets as templates for homology-based repair of CRISPR/Cas9 induced double-strand breaks. We find oligonucleotides to be templates of choice for introducing small sequence changes into the genome based on editing efficiency and ease of use. We show that polarity of oligonucleotide templates greatly affects repair efficiency: oligonucleotides in the sense orientation with respect to the target gene are better templates. In addition, combining a gene loss-of-function phenotype screen with detection of integrated fluorescent markers, we demonstrate that targeted knock-ins in Caenorhabditis elegans also can be achieved by homology-independent repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528321PMC
http://dx.doi.org/10.1534/g3.115.019273DOI Listing

Publication Analysis

Top Keywords

genome editing
8
caenorhabditis elegans
8
templates
6
repair
5
crispr/cas9 genome
4
editing caenorhabditis
4
elegans evaluation
4
evaluation templates
4
templates homology-mediated
4
homology-mediated repair
4

Similar Publications

Taming the wild: domesticating untapped northern fruit tree and shrub resources in the era of high-throughput technologies.

AoB Plants

January 2025

Department of Plant Science, McGill University, Macdonald Campus, 21111 Rue Lakeshore, Ste-Anne-de-Bellevue, H9X 3V9, Québec, Canada.

New crop`s need to emerge to provide sustainable solutions to climate change and increasing abiotic and biotic constraints on agriculture. A large breadth of northern fruit trees and shrubs exhibit a high potential for domestication; however, obstacles to implementing traditional breeding methods have hampered or dissuaded efforts for improvement. This review article proposes a unique roadmap for domestication of northern fruit crops, with a focus on biotechnological (e.

View Article and Find Full Text PDF

Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter.

View Article and Find Full Text PDF

sgRNA Single-Nucleotide Resolution by Ion-Pairing Reversed-Phase Chromatography.

Anal Chem

January 2025

Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States.

Single-stranded guide RNAs (sgRNAs) are important therapeutic modalities that facilitate selective genome editing by the CRISPR/Cas9 system. While these therapeutic modalities are synthesized through solid phase oligonucleotide synthesis similar to small interfering RNA (siRNAs) and antisense oligonucleotide (ASOs) therapeutics, their sequence length and complex secondary and tertiary structure hinder analytical characterization. The resulting current sgRNA methodologies have limited chromatographic selectivity near the FLP and limited MS compatibility.

View Article and Find Full Text PDF

Exosome-mediated CRISPR/Cas delivery: A cutting-edge frontier in cancer gene therapy.

Gene

January 2025

Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India. Electronic address:

Cancer is considered the second most common disease globally. In the past few decades, many approaches have been proposed for cancer treatment. One among those is targeted therapy using CRISPR-Cas system which plays an irreplaceable role in translational research through gene editing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!