Rationale: In recent years, segmental stable isotope analysis of hair has been a focus of research in animal dietary ecology and migration. To correctly assign tail hair segments to seasons or even Julian dates, information on tail hair growth rates is a key parameter, but is lacking for most species.

Methods: We (a) reviewed the literature on tail hair growth rates in mammals; b) made own measurements of three captive equid species; (c) measured δ(2)H, δ(13)C and δ(15)N values in sequentially cut tail hairs of three sympatric, free-ranging equids from the Mongolian Gobi, using isotope ratio mass spectrometry (IRMS); and (d) collected environmental background data on seasonal variation by measuring δ(2)H values in precipitation by IRMS and by compiling pasture productivity measured by remote sensing via the normalized difference vegetation index (NDVI).

Results: Tail hair growth rates showed significant inter- and intra-specific variation making temporal alignment problematic. In the Mongolian Gobi, high seasonal variation of δ(2)H values in precipitation results in winter lows and summer highs of δ(2)H values of available water sources. In water-dependent equids, this seasonality is reflected in the isotope signatures of sequentially cut tails hairs.

Conclusions: In regions which are subject to strong seasonal patterns we suggest identifying key isotopes which show strong seasonal variation in the environment and can be expected to be reflected in the animal tissue. The known interval between the maxima and minima of these isotope values can then be used to correctly temporally align the segmental stable isotope signature for each individual animal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437015PMC
http://dx.doi.org/10.1002/rcm.7196DOI Listing

Publication Analysis

Top Keywords

tail hair
24
hair growth
16
growth rates
12
seasonal variation
12
δ2h values
12
isotope signatures
8
cut tail
8
segmental stable
8
stable isotope
8
sequentially cut
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!