Socio-economic and medical information on Bondo sub-county community was studied to help establish the relationship between the water quality challenges, community health and water rights conditions. Health challenges have been linked to water quality and household income. A total of 1,510 households/respondents were studied by means of a questionnaire. About 69% of the households have no access to treated water. Although 92% of the respondents appear to be aware that treatment of water prevents waterborne diseases, the lowest income group and children share a high burden of waterborne diseases requiring hospitalization and causing mortality. Open defecation (12.3%) in these study areas contributes to a high incidence of waterborne diseases. The community's constitutional rights to quality water in adequate quantities are greatly infringed. The source of low-quality water is not a significant determinant of waterborne disease. The differences in poverty level in the sub-county are statistically insignificant and contribute less than other factors. Increased investment in water provision across regions, improved sanitation and availability of affordable point-of-use water purification systems will have major positive impacts on the health and economic well-being of the community.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wh.2014.039DOI Listing

Publication Analysis

Top Keywords

waterborne diseases
12
water
10
bondo sub-county
8
water quality
8
socio-economic factors
4
factors influencing
4
influencing spread
4
spread drinking
4
drinking water
4
diseases
4

Similar Publications

Cystic and alveolar echinococcosis are severe zoonotic diseases characterized by long asymptomatic periods lasting months or years. Viable Echinococcus spp. eggs released into the environment through the feces of canids can infect humans through accidental ingestion via hand-to-mouth contact or consumption of contaminated food or water.

View Article and Find Full Text PDF

Objectives: Highly pathogenic avian influenza (HPAI) poses an occupational risk for poultry workers, responders, and others in contact with infected birds. The objective of this analysis was to describe HPAI surveillance methods and outcomes, and highlight the challenges, successes, and lessons learned during the Minnesota Department of Health's (MDH's) public health response to HPAI outbreaks in Minnesota poultry flocks in the years 2015 and 2022-2023.

Methods: During both outbreaks, MDH staff attempted to contact all potentially exposed people and conduct a standardized interview.

View Article and Find Full Text PDF

Swimming pool-associated viral outbreaks in China: causes and solutions.

Front Public Health

January 2025

Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Objective: This study aimed to assess the causes of the swimming pool-associated viral outbreaks in China and discuss the possible preventive measures for the outbreaks.

Methods: A systematic search was performed in 4 Chinese and English databases for studies investigating the swimming pool-associated viral outbreaks in China up to June 2024.

Results: 29 outbreaks were included in the review.

View Article and Find Full Text PDF

Groundwater is an essential drinking water source for humans. However, improper groundwater management leads to fecal contamination and waterborne diseases caused by viral pathogens. Therefore, this study aimed to investigate norovirus (NoV) contamination by conducting nationwide monitoring over five years (2019-2023).

View Article and Find Full Text PDF

Background/objectives: Pathogen inactivation and harmful gene destruction from water just before drinking is the last line of defense to protect people from waterborne diseases. However, commonly used disinfection methods, such as chlorination, ultraviolet irradiation, and membrane filtration, experience several challenges such as continuous chemical dosing, the spread of antibiotic resistance genes (ARGs), and intensive energy consumption.

Methods: Here, we perform a simultaneous elimination of pathogens and ARGs in drinking water using local electric fields and in-situ generated trace copper ions (LEF-Cu) without external chemical dosing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!