Magnetic nanoparticles (MNPs) represent one of the most promising materials as they can act as a versatile platform in the field of bionanotechnology for enhanced imaging, diagnosis, and treatment of various diseases. Silica is the most common compound for preparing coated iron oxide NPs since it improves colloidal stability and the binding affinity for various organic molecules. Biomolecules such as cell penetrating peptides (CPPs) might be employed to decorate MNPs, combining their promising physicochemical properties with a cell penetrating ability. In this work, a computational investigation on adsorption of Antennapedia homeodomain-derived penetrating peptide (pAntp) on silica and magnetite (MAG) surfaces is presented. By employing umbrella sampling molecular dynamics, we provided a quantitative estimation of the pAntp-surface adsorption free energy to highlight the influence of surface hydroxylation state on the adsorption mechanism. The interaction between peptide and surface has shown to be mainly driven by electrostatics. In case of MAG surface, also an important contribution of van der Waals (VdW) attraction was observed. Our data suggest that a competitive mechanism between MNPs and cell membrane might partially inhibit the CPP to carry out its membrane penetrating function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp512782e | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, United Kingdom.
Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Otorhinolaryngology, Fujian Provincial Hospital, Fuzhou, Fujian, China.
Objective: Using rabbit models, this study simulated the laryngopharynx's response to the synergistic effects of various acidic reflux environments and pepsin to investigate the response mechanism underlying weak acid reflux and pepsin in the mucosal barrier injury of laryngopharyngeal reflux.
Methods: The rabbits were divided into six groups, and the original larynx was recorded for each group. During the study period, rabbits were sprayed with different doses of acid and pepsin solutions and monitored for hypopharyngeal mucosal transient impedance before and after modeling.
J Pept Sci
March 2025
Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
Developing human papillomavirus (HPV) therapeutic DNA vaccines requires an effective delivery system, such as cell-penetrating peptides (CPPs). In the current study, the multiepitope DNA constructs harboring the immunogenic and conserved epitopes of the L1, L2, and E7 proteins of HPV16/18 (pcDNA-L1-L2-E7 and pEGFP-L1-L2-E7) were delivered using KALA and REV CPPs with different properties in vitro and in vivo. Herein, after confirmation of the REV/DNA and KALA/DNA complexes, their stability was investigated against DNase I and serum protease.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
Background: Inefficient cellular uptake is a significant limitation to the efficacy of DNA vaccines. In this study, we introduce S-Cr9T, a stearyl-modified cell-penetrating peptide (CPP) designed to enhance DNA vaccine delivery by forming stable complexes with plasmid DNA, thereby protecting it from degradation and promoting efficient intracellular uptake.
Methods And Results: In vitro studies showed that S-Cr9T significantly improved plasmid stability and transfection efficiency, with optimal performance at an N/P ratio of 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!