Current strategies in tissue engineering seek to obtain a functional tissue analogue by either seeding acellular scaffolds with cells ex vivo or repopulating them with cells in vivo, after implantation in patients. To function properly, the scaffold should be non-thrombogenic and biocompatible. Especially for the case of in vivo cell repopulation, the scaffold should be prepared in a manner that protects the tissue against platelet activation and adhesion. Anti-thrombogenicity can be achieved by chemical or physical surface modification. The aim of our study was to evaluate the platelet activation and thrombogenic properties of an acellular tissue scaffold that was surface modified with reduced graphene oxide (rGO). Graphene oxide was prepared by a modified Hummers method. For the study, an acellular pulmonary valve conduit modified with rGO was used. The rGO modified tissue samples were subjected to in vitro testing through interaction with whole blood under simulated laminar flow conditions. The following cellular receptors were then analysed: CD42a, CD42b, CD41a, CD40, CD65P and PAC-1. In parallel, the adhesion of platelets (CD62P positive), leukocytes (CD45 positive) and platelet-leukocyte aggregates (CD62P/CD45 positive) on the modified surface was evaluated. As a reference, non-coated acellular tissue, Poly-l lysine and fibronectin coated tissue were also tested. The rGO surface was also analysed for biocompatibility by performing a cytotoxicity test, TUNEL assay and Cell Cycle analysis. There was no significant difference in platelet activation and adhesion between the study groups. The only significant difference was observed for the PAC-1 receptor between Poly-l lysine group and rGO and the percentage of PAC-1 positive cells was 6% and 18% respectively. The average number of activated platelets (CD62P) in the field of view was 1, while the average number of leukocytes in the field of view was 3. No adherent platelet-leukocyte aggregates were observed. There were no significant differences in the DNA fragmentation. No significant effect of rGO on the amount of cells in different phases of the cell cycle was observed. Cytotoxicity indicates that the rGO can damage cells in direct contact but have no effect on the viability of fibroblasts in indirect contact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2015.04.044 | DOI Listing |
Polymers (Basel)
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.
Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China.
Bamboo was carbonized and further modified via co-doping with graphene oxide (GO) and polyaniline (PANI) to prepare microwave absorption composites (GO/PANI/CB) by in situ polymerization of 1R-(-)-Camphorsulfonic acid (L-CSA). The conductivity of GO/PANI/CB reached 2.17 ± 0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
An energy crisis, resulting from rapid population growth and advancements in the Internet of Things, has increased the importance of energy management strategies. Conventionally, energy management is conducted using sensors; however, additional energy is required to maintain sensor operation within these systems. Herein, an all-fiber-based triboelectric nanogenerator with O plasma treatment, graphene oxide/tannic acid solution coating, and hexane/1-octadecanethiol solution coating (AFT-OGH) is fabricated to implement a self-powered sensor, generating a high electrical power density, of 0.
View Article and Find Full Text PDFMolecules
December 2024
College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!