Stromal cell-derived factor-1 (SDF-1) recruits adult stem/progenitor cells via its specific receptor, C-X-C motif receptor 4 (CXCR4), to promote heart, kidney and tendon regeneration, but little is known about the effects of SDF-1 on bone regeneration in periodontal diseases. The objective of this study was to investigate whether local administration of SDF-1 in a collagen membrane scaffold enhanced the recruitment of host stem cells and improved periodontal bone defect repair. To this end, bone defects were established on the buccal side of bilateral mandibles in Wistar rats. After application of collagen membranes loaded with SDF-1 or phosphate-buffered saline (PBS) to the defects, the effects of SDF-1 on stem cell recruitment, inflammatory cell responses, angiogenesis, osteoclastogenesis, scaffold degradation, and bone regeneration were evaluated. It showed that SDF-1 recruited host-derived mesenchymal stem cells and hematopoietic stem cells to the wound area and significantly reduced the CD11b+ inflammatory cell response. Moreover, SDF-1 increased vascular formation, induced early bone osteoclastogenesis, accelerated scaffold degradation, and promoted the quality and quantity of regenerated bone. Our results suggest that this cell-free approach by local administration of SDF-1 may be an effective strategy for development as a simple and safe technique for periodontal bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2015.04.002 | DOI Listing |
Odontology
January 2025
School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.
The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.
View Article and Find Full Text PDFJBMR Plus
February 2025
Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.
Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.
Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.
Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.
J Mater Chem B
January 2025
State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration.
View Article and Find Full Text PDFJ Dent Res
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!