Bioactive microspheres represent an extremely developing field in biomedical applications, such as bone tissue engineering and bone pathologies (metabolic bone disease, trauma or bone cancer). Their innate osteogenic properties have turned them to biomaterials with improved added value. The aim of this study was to prepare binary and ternary hybrid silica microspheres with enhanced bioactive properties according to our previous synthetic procedure. In brief, the synthetic approach based on the emulsifier free-emulsion polymerization method, by which polystyrene (PS) microspheres were produced and used as core template for the sol-gel coating method. During the coating reaction an inorganic shell was fabricated by silane and phosphate precursors (tetraethoxysilane, trimethylphosphate). The final microspheres were treated by different catalyst concentrations, during the coating process, which resulted in the formation of diffused voids (a porous-like structure). The in vitro bioactivity of the resultant microspheres was studied by treatment in simulated body fluids (SBF). The bioassay evaluation indicates the deposition of a bone-like apatite layer on microspheres' surface with enhanced bioresorbability, which verifies their bioactivity and permits their application in the treatment of bone pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2015.04.014 | DOI Listing |
iScience
January 2025
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
Organic solar cells (OSCs) have developed rapidly in recent years. However, the energy loss ( ) remains a major obstacle to further improving the photovoltaic performance. To address this issue, a ternary strategy has been employed to precisely tune the and boost the efficiency of OSCs.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
This study investigates the preparation of coamorphous systems composed entirely of active pharmaceutical ingredients (APIs), namely praziquantel, niclosamide, and mebendazole. The objective was to formulate and characterize binary and ternary coamorphous systems to evaluate their structural, thermal, and stability properties. Ten different mixtures (binary and ternary) were designed through a mixture design approach and prepared using a sustainable, one-step neat grinding process in a lab-scale vibrational mill.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic.
The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China.
In this paper, a method of ultrasound-assisted low-pressure closed acid digestion followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was proposed for trace element quantification in rock samples. By using 1.5 mL of a binary acid mixture of HNO-HF with a ratio of 2:1, rock powder samples of 50 mg were completely decomposed in 12 h at 140 °C after 4 h of ultrasonic treatment with or without pressure relief procedure.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), São Gonçalo do Amarante 59291-727, Brazil.
The durability of reinforced concrete is associated with several factors that can trigger the corrosion of reinforcement bars. Among these factors, the most significant are chloride-ion attack and carbonation. This study evaluated, through accelerated testing, self-compacting concretes (SCCs) with reduced cement content in binary, ternary, and quaternary mixtures using high-early-strength Portland cement, fly ash (FA), metakaolin (MK), and hydrated lime (HL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!