In this work, we present new nanocomposite materials derived from segmented copolyesters, comprising ethylene terephthalate (PET) segments and dimerized linoleic acid (DLA), and nanometric cerium oxide particles (CeO2). Nanoparticles were incorporated in situ during polycondensation in various concentrations, from 0.1 up to 0.6 wt.%. It was found that preparation of nanocomposites in situ, during polycondensation, had no significant influence on changes in segmental composition as determined from (1)H and (13)C, as well as 2D NMR. Thermal analysis and calculated degree of crystallinity showed that increasing concentration of ceria nanoparticles lead to an increase in mass content of PET crystallites in hard segments. The XRD investigations also showed an increased intensity of characteristic signals with increasing ceria concentration. Simultaneously, the incorporation of CeO2 led to an increase in tensile strength and elongation at break, indicating a reinforcing and plasticizing effect of ceria nanoparticles. However, the modulus at 10% strain decreased with increasing amount of nanoparticles. The in vitro culture of human cardiac progenitor cells (hCPCs) on the new materials indicated a homogenous cell displacement across the samples after 5 days with no signs of cytotoxicity, indicating good biocompatibility in vitro of CeO2-based nanocomposites and a potential for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2015.04.010 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
Diabetes mellitus (DM) induced mitochondrial oxidative stress (OS) can lead to severe injury of dental pulp. The cerium oxide nanoparticles (CNP) have been proven to have excellent antioxidative activity. However, whether CNP can relieve dental pulp damage caused by DM and the underlying mechanisms remain unclear.
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.
Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemistry, University of Hannam, Daejeon 34430, Republic of Korea.
The chemical mechanical polishing/planarization (CMP) is essential for achieving the desired surface quality and planarity required for subsequent layers and processing steps. However, the aggregation of slurry particles caused by abrasive materials can lead to scratches, defects, increased surface roughness, degradation the quality and durability of the finished surface after milling processes during the CMP process. In this study, ceria slurry was prepared using polymer dispersant with zinc salt of ethylene acrylic acid (EAA) copolymer at different contents of 5, 6, and 7 wt% (denoted as D5, D6, and D7) to minimize particle aggregation commonly observed in CMP slurries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!